高级检索+

基于Sentinel 数据的临海市森林地上生物量估测

Estimation of Forest Aboveground Biomass in Linhai based on Sentinel Data

  • 摘要: 为探究多源数据融合以及机器学习方法在森林地上生物量(Above-ground Biomass,AGB)的估测潜力, 分析影响不同林分AGB 的主要因素,以浙江省台州市临海市为研究区,提取Sentinel-2 光学遥感影像的光谱信息、 植被指数、纹理特征因子和Sentinel-1 SAR 的后向散射系数,融合森林资源二类调查数据和数字高程模型数据, 基于递归特征消除的特征选择方法筛选主要特征,基于随机森林(Random Forest, RF)、自适应提升(AdaBoost) 法和类别提升(CatBoost)法三种方法建立不同林分AGB 估测模型,以决定系数(R-squared, R?)、均方根误差 (Root Mean Square Error, RMSE)来评估模型性能。结果表明,从特征组合来看,集成光学遥感、雷达遥感、地 形因子及二类调查数据能够更全面地利用多源数据的信息,有效提高森林AGB 的估测精度;递归特征消除法降 低了模型的复杂度,消除了自变量之间的共线性,能在保持甚至提高模型估测精度的前提下,加快模型训练速度; 从6 种林分的AGB 的估测结果来看,6 种林分的AGB 的主要影响因素与个数不尽相同,这也缘于不同树种有不 同生物学和生态学特点,当然有3 个因子是共同的,即年龄、郁闭度和海拔;3 种算法中,CatBoost 优于RF,RF 优于AdaBoost,CatBoost 方法的性能指标为:阔叶混交林R2=0.78,RMSE=7.26 t·hm-2;针阔混交林R2=0.72, RMSE=11.94 t·hm-2;针叶混交林R2=0.60,RMSE=12.65 t·hm-2;其他硬阔林R2=0.82,RMSE=9.22 t·hm-2;马尾松 林R2=0.74,RMSE=10.12 t·hm-2;杉木林R2=0.75,RMSE=8.93 t·hm-2;基于RFE 的CatBoost 的方法模型总体平均 估测精度(P)超过80%。以上结果表明,Sentinel 光学影像与SAR 融合可以为森林AGB 估测提供更多有效的特 征因子;递归特征消除法结合CatBoost 方法用于区域尺度上森林AGB 的估测,精度更高,且能有效降低模型复 杂度,加快训练速度;不同林分的AGB 的主要影响因素与个数不尽相同,但年龄、郁闭度、海拔3 个因素是它 们的共同影响因素。

     

    Abstract: Forest above-ground biomass (AGB) in Linhai city, Taizhou city, Zhejiang province was estimated with vegetation indexes, texture feature factors of Sentinel-2 optical remote sensing data during late October and mid November of 2017, and backscattering coefficient of Sentinel-1 SAR. Moreover, the inventory data for forest management survey in 2017 and digital elevation model data were integrated. Based on Random Forest (RF), Adaptive Boosting (AdaBoost) and Category Boosting (CatBoost) methods, AGB estimation models of 6 forest types in Lin’an were established. The coefficient of determination (R2) and root mean squared error (RMSE) are used to evaluate the performance of the models. The results show that CatBoost is better than RF and AdaBoost. The performance indexes generated by CatBoost are: R?=0.78, RMSE=7.26 t/ha for broad-leaved mixed forest; R?=0.72, RMSE=11.94 t/ha for conifer and broadleaves mixed forest; R?=0.60, RMSE=12.65 t/ha for coniferous mixed forest; R?=0.82, RMSE=9.22 t/ha for other hard broadleaf forest; R?=0.74, RMSE=10.12 t·hm-2 for Pinus massoniana forest; R?=0.75, RMSE=8.93 t·hm-2 for Cunninghamia lanceolata forest.

     

/

返回文章
返回