高级检索+
张能军, 邱勇斌, 凌高潮, 郑文华, 余雪琴. 杉木高世代遗传参数估算及高世代育种材料选择技术[J]. 浙江林业科技, 2023, 43(1): 9-14. DOI: 10.3969/j.issn.1001-3776.2023.01.002
引用本文: 张能军, 邱勇斌, 凌高潮, 郑文华, 余雪琴. 杉木高世代遗传参数估算及高世代育种材料选择技术[J]. 浙江林业科技, 2023, 43(1): 9-14. DOI: 10.3969/j.issn.1001-3776.2023.01.002
ZHANG Neng-jun, QIU Yong-bin, LING Gao-chao, ZHENG Wen-hua, YU Xue-qin. Estimation of Genetic Parameters and Selection of Advanced Generation for Breeding Parents of Cunninghamia lanceolate[J]. Journal of Zhejiang Forestry Science and Technology, 2023, 43(1): 9-14. DOI: 10.3969/j.issn.1001-3776.2023.01.002
Citation: ZHANG Neng-jun, QIU Yong-bin, LING Gao-chao, ZHENG Wen-hua, YU Xue-qin. Estimation of Genetic Parameters and Selection of Advanced Generation for Breeding Parents of Cunninghamia lanceolate[J]. Journal of Zhejiang Forestry Science and Technology, 2023, 43(1): 9-14. DOI: 10.3969/j.issn.1001-3776.2023.01.002

杉木高世代遗传参数估算及高世代育种材料选择技术

Estimation of Genetic Parameters and Selection of Advanced Generation for Breeding Parents of Cunninghamia lanceolate

  • 摘要: 通过为估计杉木Cunninghamialanceolata多代自由授粉试验林的诸多遗传参数和育种值,为开展林木多世代育种提供经验借鉴和技术支撑。以浙江省杭州市余杭区长乐林场的杉木2代种子园家系自由授粉13年生子代林为研究对象,测定杉木39个2代家系子代试验林的胸径和木材基本密度抽样数据,利用GeneXproTools4.0软件,挖掘木材基本密度与胸径间的函数关系,获得全林的木材基本密度,并采用转化分析法等进行方差分析和遗传分析,估计全林的遗传参数和育种值。结果表明,13年生杉木胸径和木材基本密度在家系间的差异极显著,家系遗传力大于单株遗传力,胸径遗传变异系数为6.78%,木材基本密度的遗传变异系数为3.07%;胸径与木材基本密度呈现出极显著的负遗传相关(P<0.01),在此基础上估算出亲本和子代个体的育种值,逆向选择评选出8个胸径优良家系、9个木材基本密度突出的家系;采用独立淘汰法,前向选择评出3代育种亲本18个。上述研究研果表明,基于杉木胸径与木材基本密度间存在极显著的负遗传相关,通过预测不同世代个体育种值,可提高杉木高世代育种材料选择的准确性。

     

    Abstract: In the second generation clonal Cunninghamia lanceolata seed orchard in Yuhang Changle Forest Farm, Zhejiang province, a total of 39 open-pollinated filial generations (including 2 controls) were selected for seedling cultivation and afforestation test in 1997. In 2009, sampling determinations were carried out on their DBH and wood basic density. Genex Protools 4.0 software was used to excavate the functional relationship between basic density and DBH. The results showed that there were significant differences among families in DBH and basic density. The heritability of family was greater than that of individual plant. The genetic coefficient of variation of DBH and basic density were 6.78% and 3.07%. DBH had extremely significant negative genetic correlation with basic density. Breeding values of parents and filial generation were estimated. 8 families with excellent DBH and 9 families with basic density were selected by reverse selection of breeding value. Eighteen breeding parents of the third generations were selected by forward selection.

     

/

返回文章
返回