高级检索+

木本彩叶植物呈色机制研究进展

徐连峰, 高昕妍, 张强, 方玉凤, 温宝阳, 季晓慧, 刘雪梅

徐连峰, 高昕妍, 张强, 方玉凤, 温宝阳, 季晓慧, 刘雪梅. 木本彩叶植物呈色机制研究进展[J]. 浙江林业科技, 2025, 45(1): 130-138. DOI: 10.3969/j.issn.1001-3776.2024.01.017
引用本文: 徐连峰, 高昕妍, 张强, 方玉凤, 温宝阳, 季晓慧, 刘雪梅. 木本彩叶植物呈色机制研究进展[J]. 浙江林业科技, 2025, 45(1): 130-138. DOI: 10.3969/j.issn.1001-3776.2024.01.017
XU Lianfeng, GAO Xinyan, ZHANG Qiang, FANG Yufeng, WEN Baoyang, JI Xiaohui, LIU Xuemei. Research Progress on the Coloring Mechanism of Woody Color-leaved Plants[J]. Journal of Zhejiang Forestry Science and Technology, 2025, 45(1): 130-138. DOI: 10.3969/j.issn.1001-3776.2024.01.017
Citation: XU Lianfeng, GAO Xinyan, ZHANG Qiang, FANG Yufeng, WEN Baoyang, JI Xiaohui, LIU Xuemei. Research Progress on the Coloring Mechanism of Woody Color-leaved Plants[J]. Journal of Zhejiang Forestry Science and Technology, 2025, 45(1): 130-138. DOI: 10.3969/j.issn.1001-3776.2024.01.017

木本彩叶植物呈色机制研究进展

基金项目: 黑龙江省财政基本业务费项目(CZKYF2023Q002); 国家自然科学基金(32171738)
详细信息
    作者简介:

    徐连峰,研究员级高工,从事森林培育研究;E-mail: xxllff2000@126.com

    通讯作者:

    刘雪梅,教授,博士,从事林木遗传育种研究;E-mail: 695898040@qq.com。

  • 中图分类号: S687

Research Progress on the Coloring Mechanism of Woody Color-leaved Plants

  • 摘要:

    彩叶植物叶片呈色受内在遗传因素及外在环境因子共同作用。本文结合近年来国内外有关彩叶植物的研究结果,在叶色变化期间,从环境因素影响、叶片组织结构变化、分子机制调控三个方面综述木本彩叶植物呈色研究进展,为今后彩叶新树种资源的研发提供理论基础。

    Abstract:

    From 2022 to 2023, a field vegetation survey was conducted in the Songyinxi wetland, Songyang County, Zhejiang Province. The vegetation in the Songyinxi wetland is categorized into 4 vegetation type groups, 9 vegetation types, and 57 plant formations. The distribution of vegetation is determined by the growth habits of the dominant species and is primarily influenced by environmental factors such as substrate, water flow, and water level. The dominant stress factors include ecological pressures, such as invasive alien species, and human-induced factors, including habitat disturbances, environmental pollution, and embankment solidification.

  • 随着生活水平的提高,单一色调的绿化已不能满足大众的需求,彩叶植物鲜艳的色彩恰好弥补绿色植物在园林绿化上的不足[1]。因此,彩叶植物新品种培育尤为必要。在已有的研究中,叶片色素含量及色素间的比值变化是影响叶片呈色的关键原因,同时,叶片组织结构、外源物质及生理生化代谢水平也影响着叶色变化[2-4]。目前,有关叶片呈色机制的研究主要集中于形态学观察(叶色的形态特征、叶片中叶绿体结构观察、叶片叶肉细胞结构观察)、植物生理学测定、代谢组学及转录组学分析。编码与色素合成相关酶的基因表达量在叶片不同颜色时期表达量不同,代谢物含量也会有所差别[5-7]。近年来,一些常用作园林装饰的彩叶树种如大果卫矛Euonymus myrianthus、三角枫Acer buergerianum var. ningpoense、血皮槭Acer griseum、北美豆梨Pyrus calleryana、紫薇品种‘紫莹’Lagerstroemia indica‘ZiYing’和彩叶桂品种‘虔南贵妃’Osmanthus fragrans ‘QianNanGuiFei’等的呈色机制已被发掘 [8-10]。本文主要总结近年来有关彩叶植物叶片呈色机理的研究进展,以期为彩叶植物叶片呈色机制研究提供参考。

    温度、光照、湿度等外部条件的变化,会诱导植物叶片产生相应的信号,从而调节叶片相关基因的表达和相关生理过程的发生,使叶片呈现出不同的颜色[11-13]。光作为环境信号作用于植物,是影响植物生长发育的众多外界环境中最为重要的条件。对紫叶稠李Padus virginiana ‘Canada Red’进行80%遮光处理可显著影响植物体内类黄酮生物合成,叶片中花色苷的合成减少,叶片红色较浅[14]。随着遮荫度增加,‘冰川红叶’小檗Berberis thunbergii ‘Bingchuanhongye’叶色复绿更加明显,并且在全光环境下叶片更红[15]。光质是用于触发植物生长和发展结构分化的重要环境信号。在对红叶腺柳Salix chaenomelodies ‘Variegata’的研究中,红光会使叶片花青素增加,有利于叶片呈红色;蓝光和绿光会使叶片叶绿素、类胡萝卜素增加,会促使其叶片由红转绿[16]。对于红花檵木品种‘湘农粉黛’Loropetalum chinense ‘Xiangnong Fendai’来说,蓝光则更利于叶片变红[17]

    叶绿素化学性质不稳定,低温条件下易分解,而胡萝卜素和花色苷则相对稳定。低温胁迫会使山乌桕Triadica cochinchinensis和四季秋海棠Begonia semperflorens叶片中的花青素含量逐渐增加,叶绿素含量逐渐减少,使叶片由绿色转变为红色[18-19]。红花檵木品种‘黑珍珠’Loropetalum chinense ‘Hei Zhenzhu’叶片中叶绿素含量与温度呈正相关,温度过高会使叶片由红色转变为绿色[20]。充足的水分对植物生长有着重要影响。轻度的干旱胁迫可以使紫薇叶片花色素苷和可溶性糖含量以及POD酶活性有所上升[21]。旱季花青素积累率低,叶绿素含量高,导致富含花青素的紫叶茶树品种Camellia sinensis ‘TRFK 306’的大部分叶片呈现绿色;雨季积累的花青素含量远高于旱季,导致叶片呈现紫色[22]。在一定范围内,叶片颜色也会随着土壤的pH降低而显现为红色。土壤pH 在8.36时,银红槭Acer×freemanii ‘Sienna Glen’叶片含有较高的叶绿素,使叶片长时间呈现绿色;当土壤pH为 7.62时,叶片中花青素含量较高,叶片呈红色[23]。氮、磷、钾被称之为植物生长的三要素,影响着植物的生理活动。在已有研究中,黄栌Cotinus coggygria、‘红叶’南天竹Nandina domestica ‘Hongye’和黄连木Pistacia chinensis的叶色与其生长的土壤密切相关,随着土壤磷、钾、氮含量的降低,叶绿素类和类胡萝卜素含量降低,花青素和黄酮醇苷含量增加,叶色为红色;高氮时叶片中的叶绿素含量较高而花青素含量较低,叶色更倾向于绿色[24-26]。另外,施加蔗糖或水杨酸能加速红色系榉树Zelkova schneideriana叶绿素的分解,使变色期提前,叶片红色程度加深;施加蔗糖或水杨酸能延长黄色系榉树的绿色期[27-28]

    叶绿体是高等植物和一些藻类进行光合作用的主要场所,叶绿素主要分布于叶绿体的类囊体薄膜上,发育异常的叶绿体会使叶绿素无附着环境,影响叶绿素的合成,进而影响植物叶片的呈色[29]。金叶复叶槭Acer negundo ‘Aurea’叶绿体体积小且发育不完整,缺少类囊体垛叠,叶片呈金黄色[30]。叶片呈非绿色时,叶片中会出现含有较少的叶绿体、叶绿体双膜遭到破坏以及可能会出现模糊或缺失的基质薄片等现象[31-32]。Li等[33]通过对五色苋Alternanthera bettzickiana 3个品种叶片的细胞形态观察,发现红色品种含有叶绿体较少,淀粉粒小,但绿叶和杂叶品种叶细胞具有大量叶绿体。对叶肉细胞的观察发现,红色叶片栅栏组织中含有红色色素沉着,绿色叶片栅栏组织中则有绿色色素沉着,并且随着叶片逐渐变红,叶片中的栅栏组织、海绵组织厚度及气孔开度会逐渐变小[34-35]

    叶片细胞液的酸碱环境也会对呈色有一定的影响。孙健等[36]在对金叶复叶槭、金叶榆Ulmus pumila ‘Jinye’和紫叶李Prunus cerasifera f. atropurpurea等彩叶树种的研究发现,细胞液pH值在酸性范围内上升对叶片呈现黄色有抑制作用,其值的增加有利于叶片紫红色的形成。

    高等植物叶片中的色素主要有三大类:叶绿素类(包括叶绿素a和叶绿素b)、类胡萝卜素类(包括类胡萝卜素和叶黄素)和类黄酮类色素(包括花青素)。叶绿素是植物进行光合作用的主要色素,当叶绿素比例占优势时,叶片呈绿色。类胡萝卜素同样也是光合作用的重要物质,当类胡萝卜素比例占优势时,叶片呈黄色至橘色。花青素是广泛存在于自然界的水溶性天然色素,主要呈现从红色到蓝色的一系列颜色,当花青素比例占优势时,叶片呈红色或紫色。叶片呈色最直观的原因是叶片中色素种类、含量及分布位置的不同。此外,还受其内在基因调控,色素合成或降解途径中涉及多种酶、多种反应步骤的影响,改变任意环节基因的表达,都会造成色素代谢紊乱,进而使叶片出现不一样的颜色[37]

    花青素有关合成基因大体分为两类,一类是直接编码参与花色苷生物合成的酶,如苯丙氨酸解氨酶(Phenylalanine ammonia-lyase)、查尔酮合成酶(Chalcone synthetase)、查尔酮异构酶(Chalcone isomerase)等;另一类是不参与花色苷合成的调节基因,通过调控基因表达强度,进而调节花青素的积累,包括MYBbHLHWD40等转录因子[38-42]

    花青素合成由苯丙氨酸起始,苯丙氨酸解氨酶为合成途径中第一个关键酶,最后由花青苷合成酶将无色的花色素氧化生成有色但易分解的花色素。花青素合成途径如图1[43-44]。在红花槭Acer rubrumCHS基因正向调控花青素及其衍生物的生成[45]。在对刺槐Anoectochilus roxburghii的研究中,野生型和黄色突变体相比,花青素生物合成基因(CHSF3HF35H)下调 [46]。紫叶茶树品种‘紫心’Camellia sinensis ‘ZX’和‘紫娟’C. sinensis ‘Zijuan’叶色由紫变绿时参与类黄酮、花青素生物合成基因PALCHIANRDFR等下调[47]。Huang等[48]通过对代谢组及转录组的数据分析发现,原花青素在紫叶石崖茶Adinandra nitida中积累,原花青素生物合成还原酶基因ANR1ANR2与叶片变色积累呈正相关同样,在对鸡爪槭Acer palmatum、水曲柳Fraxinus angustifolia及彩叶桂‘紫嫣公主’Osmanthus fragrans ‘Ziyan Gongzhu’ 的研究中,不同品种或不同叶色时期,花青素合成途径中的相关基因都会出现表达量上调或下调的情况[49-51]

    图  1  花青素合成途径
    注:PAL-苯丙氨酸解氨酶;C4H-肉桂酸羟化酶;4CL-香豆酸 CoA连接酶;CHS-查尔酮合成酶;CHI-查尔酮异构酶;F3H-黄烷酮3-羟化酶;F3’H-类黄酮3’-羟化酶;F3’5’H-类黄酮 3’,5’-羟化酶;FLS-黄酮醇合成酶;DFR- 二氢黄酮醇-4-还原酶;LAR-无色花色素还原酶;ANS-花青素合成酶;ANR-花青素还原酶;UFGT-类黄酮 3-O-糖苷转移酶。
    Figure  1.  Anthocyanin synthesis pathway

    转录因子MYB具有参与器官形态建成、花青素代谢调控以及抵御胁迫等功能[52-54]。通过对‘虔南桂妃’转录组分析,在叶片红色时期鉴定出 6 种OfMYB(称为OfMYB1-OfMYB6),当叶片颜色由红转绿时,OfMYB3基因的表达水平呈现出显著下降的趋势[55-56]CsMYB113在茶Camellia sinensis中瞬时过表达能提高花青素含量[57]。在烟草Nicotiana tabacumApMYB基因过表达也促进了花青素的合成[58]。在彩叶芋Caladium bicolorCbMYB5基因通过调节CbCHSCbF3HCbDFRCbANS等基因的表达量来影响花青素的合成[59]。单独过表达ROS1(MYB型基因)可显著提高拟南芥叶片和种子中花青素的产生,并触发AtDFRAtANS的转录。另外,当ROS1DEL(bHLH型基因)共表达时,会加强花青素的合成[60]。花青素合成过程中涉及多种转录因子的参与(表1)。据报道,NAC转录因子家族的某些成员在花青素生物合成中也发挥作用,PpNAC1在秋季红叶桃 Prunus persica ‘99-30-33’中的表达量高度上调,并与PpMYB10.1的启动子结合,激活其与PpGSTPpUFGT的表达[61]。在槲树Quercus dentata 中,QdNAC可直接激活QdSGR的表达,调控叶绿素的降解,还可以与MYB相互作用来促进花青素的积累[62]。此外,光敏色素转录因子PIF也参与花青素的生物合成,PpPIF8的过表达促进花青素的生物合成[63]。WRKY家族的转录因子在花青素合成过程中也同样起一定作用,在葡萄Vitis vinifera中,VvWRKY5可以促进伤口中花青素的积累,并且可以与VvLOX的启动子元件结合来促进茉莉酸的合成,而茉莉酸是一种正调控花青素积累的植物激素[64]

    表  1  花青素合成相关转录因子
    Table  1.  Anthocyanin synthesis-related transcription factors
    类别转录因子物种调节基因参考文献
    MYBCbMYB5彩叶芋Caladium bicolorCHS、F3H、DFRANS[59]
    LfMYB5枫香树Liquidambar formosanaLfF3’5’H[65]
    LfMYB123LfF3’H1、LfDFR1
    LfMYB113LfF3’H1LfDFR1、LfDFR2
    QdMYB槲树Quercus dentataQdCHS[62]
    PcMYB113黄连木Pistacia chinensisF3H[66]
    McMYB12a苹果Malus CrabappleLAR2ANR1ANR2、CHS[67]
    McMYB12bLAR2ANR1ANR2、CHS
    bHLHPdTT8美洲黑杨 Populus deltoidsMYB118[68]
    CsbHLH111贴梗海棠Chaenomeles speciosaCHI[69]
    CpbHLH1腊梅Chimonanthus praecoxPAP1AN2[70]
    WD40FcTTG1无花果Ficus caricaFcMYB114FcMYB123FcbHLH42[71]
    NACPpNAC1Prunus persicaGSTUFGT[61]
    QdNAC槲树Quercus dentataSGR[62]
    WRKYWRKY33拟南芥Arabidopsis thalianaDRF[72]
    VvWRKY5葡萄Vitis viniferaLOXMYBA1[64]
    下载: 导出CSV 
    | 显示表格

    叶绿素是普通植物叶片呈绿色的主要原因,在合成与降解过程中,任意一个基因的变化都有可能影响叶绿素的积累或降解,进而极大地影响彩色植物的叶片颜色。

    目前,叶绿素的循环、周转和降解途径已经在模式生物拟南芥中得到了很好的建立,参与叶绿素生物合成的酶有15种(表2),例如谷氨酰-tRNA还原酶(Glutamyl-tRNA reductase)、原叶绿素酸酯氧化还原酶(Protochlorophyllide oxidoreductase)及叶绿素合酶(Chlorophyll synthase)等 [73-76]。叶绿素合酶的作用是将叶绿素酸酯b转变为叶绿素b,与紫苏Perilla frutescens var. crispa绿叶品种相比,叶绿素合酶基因CHLG会在紫苏紫叶品种中下调表达[77]。金叶弯刺蔷薇Rosa beggeriana ‘Aurea’是一种叶片为黄绿色的突变体,参与叶绿素合成基因(HEMC、HEME、CHLI、DVRPOR)会在该突变体中下调,并且参与叶绿素降解的NYC1NOL也显著下调,这与其表型结果一致,说明叶绿体的生物合成和降解均受到抑制,导致叶绿体在突变体中的积累减少,进而使叶片表现为黄绿色[78]。在红花槭叶绿素的合成代谢中,叶绿素a是发挥主要作用的色素,ArPOR 正向调控叶绿素a的合成,而ArNOL2逆向调控叶绿素a的生成[45]ChlH基因在叶绿素合成通路上起重要作用,它编码镁螯合酶中的H-亚单元。在连翘木樨Forsythia suspensa叶片中,当ChlH被沉默后,叶绿素合成受到抑制,叶片由绿色变为黄色[79],对沉默ChlH基因的连翘叶片中的色素含量进行测定时,发现叶绿素和类胡萝卜素含量显著降低,叶绿素a和叶绿素 b的含量则显著增加[80]。叶绿素降解途径大致分为六个步骤,其中涉及多种酶,例如叶绿素酶(chlorophyllase)、脱镁叶绿素水解酶(Pheophytin pheophorbide hydrolase)、脱镁螯合酶(Mg-dechelatase)等。与健康叶片相比,茶梅黄花叶片中叶绿素降解相关基因SGR表达量显著升高,可能是叶绿素降解速率显著高于合成速率所致[81]。通过对三角杨Populus deltoides黄叶突变体与绿叶野生型进行转录组学分析,发现与叶绿素降解相关的叶绿素酶CLH基因在黄叶中上调表达,说明黄叶的形成是由于叶绿素合成或分解代谢受到破坏[82]。其他基因可能在叶绿素合成中起作用,进而影响叶片呈色。在Gang等的研究中,从白桦Betula platyphylla × B. Pendula BpCCR1过表达转基因株系分离出一种缺乏叶绿素的突变体,该突变体与对照组相比产生黄绿色的叶片[83]CbuDnaJ49过表达阳性转基因幼苗呈现白化叶片,且发现叶绿素和类胡萝卜素含量明显低于野生型[84]

    表  2  叶绿素代谢部分相关酶
    Table  2.  Chlorophyll metabolism is partially related to enzymes
    酶的名称拟南芥中基因名称
    叶绿素合成酶谷氨酰-tRNA 还原酶(Glutamyl-tRNA reductase, GluTR)AtHEMA1AtHEMA2AtHEMA3
    胆色素原脱氨酶(porphobilinogen deaminase, PBGD)AtHEMC
    尿卟啉原Ⅲ脱羧酶 (Uroporphyrinogen Ⅲ decarboxylase, UROD)AtHEME1AtHEME2
    尿卟啉原Ⅲ合成酶 (Uroporphyrinogen Ⅲ synthase, UROS)AtHEMD
    原叶绿素酸酯氧化还原酶 (Protochlorophyllide oxidoreductase, POR)AtPORAAtPORBAtPORC
    叶绿素酸酯a加氧酶 (Chlorophyllide a oxygenase, CAO)AtCAO (AtCHL)
    叶绿素合酶 (Chlorophyll synthase, CHLG)AtCHLG
    二乙烯还原酶(divinyl reductase, DVR)AtDVR
    镁螯合酶 D 亚基(Mg chelatase D subunit, CHLD)AtCHLD
    镁螯合酶 H 亚基(Mg chelatase H subunit, CHLH)AtCHLH
    镁螯合酶 I 亚基(Mg chelatase I subunit, CHLI)AtCHLI1AtCHLI2
    叶绿素降解酶叶绿素b还原酶AtNYEAtNOLAtNYC1-LIKE
    叶绿素酶(chlorophyllase, CLH)AtCLH1AtCLH2
    脱镁叶绿酸氧化酶(Pheophorbide a Oxygenase, PAO)AtPAOACD1
    脱镁叶绿素水解酶(pheophytin pheophorbide hydrolase, PPH)AtPPH
    下载: 导出CSV 
    | 显示表格

    此外,一些转录因子会通过直接或间接途径调节植物叶绿素的含量。GLK是与叶绿体发育和叶绿素合成有关的转录因子,包含GLK1GLK2基因。在山杨Populus davidiana和裂叶桦Betula pendula ‘Dalecarlica’中,抑制表达GLK基因叶片中叶绿素含量显著低于野生型,叶片颜色呈黄绿[85-86]。在银中杨Populus alba 中,PaGLK过表达株系叶片颜色较对照株系更深,叶绿素含量增加,净光合速率降低[87]。在拟南芥中,GhWRKY33过表达极大程度上延缓叶片衰老,叶绿素含量升高[88]。NAC转录因子家族中的LpNAL会抑制LpSGRLpNAL过表达会使黑麦草perennial ryegrass出现保持绿色的表型[89]BrTCP7可以与叶绿素分解代谢相关基因BrRCCR的启动子结合,促进叶片衰老[90]

    类胡萝卜素是一种光合辅助色素,在光合作用中发挥重要作用。在彩叶植物叶片颜色变化过程中,类胡萝卜素也同样参与叶片呈色。类胡萝卜色素合成途径中涉及多种酶,其中研究较多的酶有八氢番茄红素合成酶(phytoene synthase)、八氢番茄红素脱氢酶(phytoene desaturase)及番茄红素ε-环化酶(lycopene ε-cyclase)等[91]。诱导烟草PSY1PSY2基因沉默,发现叶片类胡萝卜素和叶绿素含量显著降低,并出现严重漂白的特征[92]。高温下,桂花中类胡萝卜素合成基因OfPSY1OfLCYB1的转录下调,以及降解基因OfNCED3OfCCD1-1OfCCD1-2OfCCD4-1上调表达,高温下OfLCYB1的启动子活性被抑制,类胡萝卜素合成受到抑制才使类胡萝卜素含量较低[93]。类胡萝卜素降解主要分别通过CCD途径(类胡萝卜素双加氧酶,Carotene dioxygenase)和BCH途径(9-顺式-环氧类胡萝卜素双加氧酶,9-cis-epoxycarotenoid dioxygenase)两个降解途径作用完成[94]。RNA干扰技术(RNAi)介导的NtCCD4沉默发现烟草转基因植株叶片呈黄色,NtCCD4三突变和双突变植物在其成熟叶片中高度积累类胡萝卜素,表明沉默该基因使类胡萝卜素降解受到抑制[95]。在黄叶突变银杏Ginkgo biloba中叶绿素a与叶绿素b、类胡萝卜素与叶绿素b的比例较高,同时9-顺式-环氧类胡萝卜素双加氧酶NCED基因表达量在野生型和黄叶突变型中有显著差异[96]

    通常情况下,温度、光照、湿度、胁迫环境等外部条件的变化可以诱导植物叶片产生相应的信号,从而调节叶片呈色相关基因的表达和相关生理过程的发生,使叶片呈现出不同的颜色。随着绿化建设的兴起,市场对于彩叶树种的需求大大提高。研究彩叶植物叶片变色的生理和分子调控机制,将为今后人工调控叶色技术及彩叶树种新资源开发提供参考价值。转录组学与代谢组学相结合不仅可以加深对特定基因表达的理解,还可以从代谢物水平的变化中鉴定出与生物学特性相关的功能基因,揭示特定基因的调控机制。但目前在分子层面针对彩叶植物色变的研究仅涉及MYB、WD40、GLK等常见的与叶片呈色有关的转录因子家族,其他可能参与叶色调控的转录因子家族还有待被挖掘;并且大多数的研究都是基于拟南芥、烟草等模式生物,还需要在木本植物上加以验证调控机制。因此,应深入探索木本植物呈色机理,进而有利于通过分子育种技术得到彩叶树种新资源。

  • 图  1   花青素合成途径

    注:PAL-苯丙氨酸解氨酶;C4H-肉桂酸羟化酶;4CL-香豆酸 CoA连接酶;CHS-查尔酮合成酶;CHI-查尔酮异构酶;F3H-黄烷酮3-羟化酶;F3’H-类黄酮3’-羟化酶;F3’5’H-类黄酮 3’,5’-羟化酶;FLS-黄酮醇合成酶;DFR- 二氢黄酮醇-4-还原酶;LAR-无色花色素还原酶;ANS-花青素合成酶;ANR-花青素还原酶;UFGT-类黄酮 3-O-糖苷转移酶。

    Figure  1.   Anthocyanin synthesis pathway

    表  1   花青素合成相关转录因子

    Table  1   Anthocyanin synthesis-related transcription factors

    类别转录因子物种调节基因参考文献
    MYBCbMYB5彩叶芋Caladium bicolorCHS、F3H、DFRANS[59]
    LfMYB5枫香树Liquidambar formosanaLfF3’5’H[65]
    LfMYB123LfF3’H1、LfDFR1
    LfMYB113LfF3’H1LfDFR1、LfDFR2
    QdMYB槲树Quercus dentataQdCHS[62]
    PcMYB113黄连木Pistacia chinensisF3H[66]
    McMYB12a苹果Malus CrabappleLAR2ANR1ANR2、CHS[67]
    McMYB12bLAR2ANR1ANR2、CHS
    bHLHPdTT8美洲黑杨 Populus deltoidsMYB118[68]
    CsbHLH111贴梗海棠Chaenomeles speciosaCHI[69]
    CpbHLH1腊梅Chimonanthus praecoxPAP1AN2[70]
    WD40FcTTG1无花果Ficus caricaFcMYB114FcMYB123FcbHLH42[71]
    NACPpNAC1Prunus persicaGSTUFGT[61]
    QdNAC槲树Quercus dentataSGR[62]
    WRKYWRKY33拟南芥Arabidopsis thalianaDRF[72]
    VvWRKY5葡萄Vitis viniferaLOXMYBA1[64]
    下载: 导出CSV

    表  2   叶绿素代谢部分相关酶

    Table  2   Chlorophyll metabolism is partially related to enzymes

    酶的名称拟南芥中基因名称
    叶绿素合成酶谷氨酰-tRNA 还原酶(Glutamyl-tRNA reductase, GluTR)AtHEMA1AtHEMA2AtHEMA3
    胆色素原脱氨酶(porphobilinogen deaminase, PBGD)AtHEMC
    尿卟啉原Ⅲ脱羧酶 (Uroporphyrinogen Ⅲ decarboxylase, UROD)AtHEME1AtHEME2
    尿卟啉原Ⅲ合成酶 (Uroporphyrinogen Ⅲ synthase, UROS)AtHEMD
    原叶绿素酸酯氧化还原酶 (Protochlorophyllide oxidoreductase, POR)AtPORAAtPORBAtPORC
    叶绿素酸酯a加氧酶 (Chlorophyllide a oxygenase, CAO)AtCAO (AtCHL)
    叶绿素合酶 (Chlorophyll synthase, CHLG)AtCHLG
    二乙烯还原酶(divinyl reductase, DVR)AtDVR
    镁螯合酶 D 亚基(Mg chelatase D subunit, CHLD)AtCHLD
    镁螯合酶 H 亚基(Mg chelatase H subunit, CHLH)AtCHLH
    镁螯合酶 I 亚基(Mg chelatase I subunit, CHLI)AtCHLI1AtCHLI2
    叶绿素降解酶叶绿素b还原酶AtNYEAtNOLAtNYC1-LIKE
    叶绿素酶(chlorophyllase, CLH)AtCLH1AtCLH2
    脱镁叶绿酸氧化酶(Pheophorbide a Oxygenase, PAO)AtPAOACD1
    脱镁叶绿素水解酶(pheophytin pheophorbide hydrolase, PPH)AtPPH
    下载: 导出CSV
  • [1] 邓思航,邓琳煜,黄琳涵,等. 彩叶植物呈色机理及其在园林造景中的应用[J]. 现代园艺,2022,45(19):123 − 125. doi: 10.3969/j.issn.1006-4958.2022.19.046
    [2]

    FUKANO Y,YAMORI W,MISU H,et al. From green to red: Urban heat stress drives leaf color evolution[J]. Science Advances,2023,9(42):eabq3542. doi: 10.1126/sciadv.abq3542

    [3]

    YAN Y Y,QIN L,KUN Y,et al. Transcriptomic and metabolomic analyses reveal how girdling promotes leaf color expression in Acer rubrum L[J]. BMC Plant Biology,2022,22(1):498. doi: 10.1186/s12870-022-03776-6

    [4]

    CAO H,LI H,CHEN X,et al. Insight into the molecular mechanisms of leaf coloration in Cymbidium ensifolium[J]. Frontiers in Genetics,2022,13:923082. doi: 10.3389/fgene.2022.923082

    [5]

    LI X,LI Y,ZHAO MH,et al. Molecular and metabolic insights into anthocyanin biosynthesis for leaf color change in chokecherry (Padus virginiana)[J]. International Journal of Molecular Sciences,2021,22(19):10697. doi: 10.3390/ijms221910697

    [6] 崔祺,吴昀,李东泽,等. 彩叶桂叶片发育过程中叶色表型与色素成分变化[J]. 南京林业大学学报(自然科学版),2023,47(2):79 − 86.
    [7] 万仁平,罗德义,张少露,等. 红罗宾石楠叶色变化及色素含量动态[J]. 应用与环境生物学报,2023,29(4):954 − 960.
    [8] 宋鹏,丁彦芬,李涵,等. 大果卫矛和欧洲卫矛叶片呈色机制研究[J]. 河南农业科学,2019,48(8):122 − 128.
    [9] 王萌,常格,王琦,等. 4种园林树木叶片秋季变色期的呈色机理[J]. 林业与生态科学,2020,35(1):93 − 98.
    [10] 邵雯雯,何钢,乔中全,等. 6个紫薇品种叶片色彩变化及其与色素含量的相关性[J]. 西北林学院学报,2022,37(5):104 − 110,123.
    [11] 王燕龙,车晓雨,李彦慧,等. 狭叶白蜡秋季叶片呈色生理变化研究[J]. 河北农业大学学报,2023,46(4):55 − 64.
    [12] 张德顺,战颖,姚鳗卿,等. 不同程度干旱胁迫对叶片颜色的影响[J]. 上海农业学报,2022,38(5):27 − 31.
    [13] 刘凤轩. 外源蔗糖和DA-6对辽宁3种秋色叶树种秋叶变色的影响[D]. 沈阳:沈阳农业大学,2020.
    [14] 马赫,蔡建超,张克中,等. 光照对紫叶稠李花色素苷合成调控通路的影响[J]. 上海农业学报,2022,38(2):28 − 36.
    [15] 刘卫平,任亚超,杨敏生,等. ‘冰川红叶’小檗对遮荫的生理响应及转录组分析[J]. 植物生理学报,2023,59(5):977 − 996.
    [16] 范皓月. 红叶腺柳叶龄与叶色的相关性及光质对呈色的影响[D]. 北京:中国林业科学研究院,2019.
    [17]

    ZHANG Y F,LIU Y,LING L,et al. Phenotypic,physiological and molecular response of loropetalum chinense var. rubrum under different light quality treatments based on leaf color changes[J]. Plants,2023,12(11):2169. doi: 10.3390/plants12112169

    [18] 黄旭萍. 彩叶山乌桕优株筛选及其低温胁迫下叶色变化机理研究[D]. 福州:福建农林大学,2022.
    [19] 姚珂心,齐睿,王瑞博,等. 低温胁迫四季秋海棠叶片色素含量与叶色参数相关性分析[J/OL]. 分子植物育种:1 − 17[2023-05-20]. http://kns.cnki.net/kcms/detail/46.10-68.S.20220224.0951.006.html.
    [20]

    CAI W Q,ZHANG D M,ZHANG X,et al. Leaf color change and photosystem function evaluation under heat treatment revealed the stress resistance Variation between Loropetalum chinense and L. chinense var. rubrum[J]. PeerJ,2023,11:e14834. doi: 10.7717/peerj.14834

    [21] 徐晴晴. 紫薇转色期叶色变化的色彩参数及生理特性研究[D]. 郑州:河南农业大学,2022.
    [22]

    MARITIM T K,KORIR R K,NYABUNDI K W,et al. Molecular regulation of anthocyanin discoloration under water stress and high solar irradiance in pluckable shoots of purple tea cultivar[J]. Planta,2021,254(5):85. doi: 10.1007/s00425-021-03736-8

    [23] 沈馨,王开勇,周晓杰,等. 不同土壤pH对银红槭叶色变化的影响[J]. 西北林学院学报,2022,37(2):29 − 36. doi: 10.3969/j.issn.1001-7461.2022.02.04
    [24]

    TAN X,WANG W H,GAO L,et al. The difference in leaf color quality of Cotinus coggygria during the coloration peak period affected by soil and topographic heterogeneity[J]. CATENA,2023,228:107140. doi: 10.1016/j.catena.2023.107140

    [25] 孙泽晨,任文,潘远智,等. 氮、磷、钾肥配施对‘红叶’南天竹叶片色素和可溶性糖含量的影响及相关性分析[J]. 植物资源与环境学报,2017,26(3):59 − 68. doi: 10.3969/j.issn.1674-7895.2017.03.08
    [26] 刘邵宇. 不同施肥处理对黄连木幼苗栽植生长和叶色变化的影响[D]. 北京:北京林业大学,2017.
    [27] 郭瀚成,金晓玲. 外源蔗糖对3种色系榉树秋季叶色变化的影响[J]. 植物生理学报,2020,56(11):2487 − 2494.
    [28] 张亚平,曾艳,刘晓玲,等. 叶面喷施水杨酸对3种色系榉树秋季叶片呈色的影响[J]. 植物生理学报,2018,54(1):127 − 132.
    [29]

    KIRCHHOFF H. Chloroplast ultrastructure in plants[J]. The New phytologist,2019,223(2):565 − 574. doi: 10.1111/nph.15730

    [30] 康莹,潘晶晶,陈建华,等. 金叶复叶槭叶片色素与解剖结构[J]. 植物研究,2023,43(4):591 − 600.
    [31]

    LI Y,ZHANG Z Y,WANG P,et al. Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant[J]. Genes Genomics,2015,37(10):851 − 863. doi: 10.1007/s13258-015-0317-y

    [32]

    GAO J,LIANG D,XU Q Q,et al. Involvement of CsERF2 in leaf variegation of Cymbidium sinense ‘Dharma’[J]. Planta,2020,252(2):29. doi: 10.1007/s00425-020-03426-x

    [33]

    LI W J,LI H G,SHI L S,et al. Leaf color formation mechanisms in Alternanthera bettzickiana elucidated by metabolite and transcriptome analyses[J]. Planta,2022,255(3):59. doi: 10.1007/s00425-022-03840-3

    [34]

    ZHANG X,ZHANG L,ZHANG D M,et al. Comprehensive analysis of metabolome and transcriptome reveals the mechanism of color formation in different leave of Loropetalum Chinense var. Rubrum[J]. BMC Plant Biology,2023,23(1):133. doi: 10.1186/s12870-023-04143-9

    [35]

    LI J,WU K L,MA G H,et al. Transcriptomic analysis reveals biosynthesis genes and transcription factors related to leaf anthocyanin biosynthesis in Aglaonema commutatum[J]. BMC Genomics,2023,24(1):28. doi: 10.1186/s12864-022-09107-1

    [36] 孙健. 4种彩叶植物生长季叶色表达与色素含量关系研究[D]. 呼和浩特:内蒙古农业大学,2022.
    [37] 姜卫兵,庄猛,韩浩章,等. 彩叶植物呈色机理及光合特性研究进展[J]. 园艺学报,2005(2):352 − 358. doi: 10.3321/j.issn:0513-353X.2005.02.042
    [38]

    ZHANG S W,YU X R,CHEN M J,et al. Comparative transcriptome and metabolome Profiling reveal mechanisms of red leaf color fading in Populus × euramericana cv. ‘Zhonghuahongye’[J]. Plants,2023,12(19):3511. doi: 10.3390/plants12193511

    [39]

    WANG X J,PENG X Q,SHU X C,et al. Genome-wide identification and characterization of PdbHLH transcription factors related to anthocyanin biosynthesis in colored-leaf poplar (Populus deltoids)[J]. BMC Genomics,2022,23(1):244. doi: 10.1186/s12864-022-08460-5

    [40]

    LIU Y,LIN L,MO Q,et al. Genome-wide analysis of the bHLH gene family in Loropetalum chinense var. rubrum:identification,classification,evolution,and diversity of expression patterns under cultivation [J]. Plants,2023,12(19):3392.

    [41]

    FUJIMOTO T,OTANI M,NAKANO M. Production of colored foliage phenotypes in Kalanchoe blossfeldiana by ectopic expression of R2R3 MYB genes[J]. Journal of Plant Biochemistry and Biotechnology,2022,31:665 − 672. doi: 10.1007/s13562-021-00760-3

    [42]

    LIM S H, KIM D H, LEE J Y. R2R3-MYB repressor, BrMYB32, regulates anthocyanin biosynthesis in Chinese cabbage[J]. Physiologia Plantarum,2024,176(6):e14591. doi: 10.1111/ppl.14591

    [43] 王江昱,田淑婷,张涵,等. 单子叶观赏植物花青素苷呈色机制研究进展[J]. 扬州大学学报(农业与生命科学版),2022,43(5):101 − 114.
    [44] 牛钰,李晶,王俊文,等. 高等植物花青素生物合成、调控、生物活性及其检测的研究进展[J]. 浙江农业学报,2024,36(4):978 − 996.
    [45] 陆小雨. 基于联合组学技术的红花槭叶片呈色机理分析和ArMYB89的基因功能研究[D]. 合肥:安徽农业大学,2022.
    [46]

    YE X X,CHEN Y Q,WU J S,et al. Biochemical and transcriptome analysis reveals pigment biosynthesis influenced chlorina leaf formation in Anoectochilus roxburghii (Wall.) Lindl[J]. Biochemical Genetics,2023,62(2):1040 − 1054.

    [47]

    SHEN J Z,ZOU Z W,ZHANG X Z,et al. Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant (Camellia sinensis L.) cultivars[J]. Horticulture Research,2018,5:7. doi: 10.1038/s41438-017-0010-1

    [48]

    HUANG R S,SU Y T,SHEN H Y,et al. Integrative transcriptome and metabolome analysis to reveal red leaf coloration in Shiya Tea (Adinandra nitida)[J]. Frontiers in bioscience(Landmark edition),2023,28(10):236.

    [49] 朱璐,闻婧,马秋月,等. 鸡爪槭金陵丹枫和金陵黄枫叶片呈色分析[J]. 江苏农业学报,2022,38(2):521 − 527. doi: 10.3969/j.issn.1000-4440.2022.02.028
    [50]

    WANG Y L,ZHEN J P,CHE X Y,et al. Transcriptomic and metabolomic analysis of autumn leaf color change in Fraxinus angustifolia[J]. PeerJ,2023,11:e15319. doi: 10.7717/peerj.15319

    [51]

    GUO P,HUANG Z Q,ZHAO W,et al. Mechanisms for leaf color changes in Osmanthus fragrans ‘Ziyan Gongzhu’ using physiology,transcriptomics and metabolomics[J]. BMC Plant Biology,2023,23(1):453. doi: 10.1186/s12870-023-04457-8

    [52]

    LI C X,YU W J,XU J R,et al. Anthocyanin biosynthesis induced by MYB transcription factors in Plants[J]. International Journal of Molecular Sciences,2022,23(19):11701. doi: 10.3390/ijms231911701

    [53]

    ZHOU Z X,WEI X X,LAN H Y,et al. CgMYB1,an R2R3-MYB transcription factor,can alleviate abiotic stress in an annual halophyte Chenopodium glaucum[J]. Plant physiology and biochemistry,2023,196:484 − 496. doi: 10.1016/j.plaphy.2023.01.055

    [54]

    MENCONI J,PERATA P,GONZALI S. Novel R2R3 MYB transcription factors regulate anthocyanin synthesis in Aubergine tomato plants[J]. BMC plant biology,2023,23(1):148. doi: 10.1186/s12870-023-04153-7

    [55] 崔祺,黄子洋,刘洁等. 彩叶桂(Osmanthus fragrans(Thunb.)Loureiro)OfMYB3基因克隆与表达分析[J/OL]. 分子植物育种:1 − 10[2023-05-25]. http://kns.cnki.net/kcms/detail/46.1068.S.20220915.1758.026.html.
    [56]

    CUI Q,HUANG J H,WU F,et al. Biochemical and transcriptomic analyses reveal that critical genes involved in pigment biosynthesis influence leaf color changes in a new sweet osmanthus cultivar ‘Qiannan Guifei’[J]. Peer J,2021,9:e12265. doi: 10.7717/peerj.12265

    [57]

    SHUI L Y,LI W Y,YAN M L,et al. Characterization of the R2R3-MYB transcription factor CsMYB113 regulates anthocyaninbiosynthesis in tea plants(Camellia sinensis)[J]. Plant Molecular Biology Reporter,2023,41:46 − 58.

    [58]

    SUN S J,ZHANG Q,YU Y F,et al. Leaf coloration in Acer palmatum is associated with a positive regulator ApMYB1 with potential for breeding color-leafed plants[J]. Plants,2022,11(6):759. doi: 10.3390/plants11060759

    [59] 潘玉芳. 彩叶芋内参基因筛选和CbMYB5基因的克隆及功能分析[D]. 重庆:西南大学,2021.
    [60]

    WANG F L,ZHENG T,ZHU Y,et al. The ROSEA1 and DELILA transcription factors modified plant organ color in Arabidopsis but not in Brassica napus[J]. Plant Molecular Biology Reporter,2023,41:185 − 193.

    [61]

    MWNG J R,SUN S H,LI A et al. A NAC transcription factor,PpNAC1,regulates the expression of PpMYB10.1 to promote anthocyanin biosynthesis in the leaves of peach trees in autumn[J]. Horticulture Advances,2023,1:8. doi: 10.1007/s44281-023-00012-5

    [62]

    WANG W B,HE X F,YAN X M,et al. Chromosome-scale genome assembly and insights into the metabolome and gene regulation of leaf color transition in an important oak species,Quercus dentata[J]. New Phytol,2023,238(5):2016 − 2032. doi: 10.1111/nph.18814

    [63]

    MA Z Y,WEI C Q,CHENG Y D,et al. RNA-Seq analysis identifies transcription factors involved in anthocyanin biosynthesis of 'Red Zaosu' pear peel and functional study of PpPIF8[J]. International Journal of Molecular Sciences,2022,23(9):4798. doi: 10.3390/ijms23094798

    [64]

    ZHANG Z,CHEN C,JIANG C,et al. VvWRKY5 positively regulates wounding-induced anthocyanin accumulation in grape by interplaying with VvMYBA1 and promoting jasmonic acid biosynthesis[J]. Horticulture Research,2024,11(5):uhae083. doi: 10.1093/hr/uhae083

    [65]

    WEN C H,TSAO N W,WANG S Y,et al. Color variation in young and senescent leaves of formosan sweet gum (Liquidambar formosana) by the gene regulation of anthocyanidin biosynthesis[J]. Physiologia Plantarum,2021,172(3):1750 − 1763. doi: 10.1111/ppl.13385

    [66]

    SONG X H,YANG Q S,LIU Y,et al. Genome-wide identification of Pistacia R2R3-MYB gene family and function characterization of PcMYB113 during autumn leaf coloration in Pistacia chinensis[J]. International Journal of Biological Macromolecules,2021,192:16 − 27. doi: 10.1016/j.ijbiomac.2021.09.092

    [67]

    TIAN J,ZHANG J,HAN Z Y,et al. McMYB12 Transcription factors co-regulate proanthocyanidin and anthocyanin biosynthesis in Malus Crabapple[J]. Scientific Reports,2017,7:43715. doi: 10.1038/srep43715

    [68]

    WANG H H,WANG X Q,YU C Y,et al. MYB transcription factor PdMYB118 directly interacts with bHLH transcription factor PdTT8 to regulate wound-induced anthocyanin biosynthesis in poplar[J]. BMC Plant Biology,2020,20(1):173. doi: 10.1186/s12870-020-02389-1

    [69]

    REN Y S,ZHANG S Y,ZHAO Q Y,et al. The CsMYB123 and CsbHLH111 are involved in drought stress-induced anthocyanin biosynthesis in Chaenomeles speciosa[J]. Molecular Horticulture,2023,3(1):25. doi: 10.1186/s43897-023-00071-2

    [70]

    ZHAO R ,SONG X X,YANG N,et al. Expression of the subgroup IIIf bHLH transcription factor CpbHLH1 from Chimonanthus praecox (L.) in transgenic model plants inhibits anthocyanin accumulation[J]. Plant Cell Reports,2020,39(7),891 − 907.

    [71]

    FAN Z Y,ZHAI Y L,WANG Y,et al. Genome-wide analysis of anthocyanin biosynthesis begulatory WD40 gene FcTTG1 and related family in Ficus carica L[J]. Frontiers in Plant Science,2022,13:948084. doi: 10.3389/fpls.2022.948084

    [72]

    TAO H,GAO F,LI L Y,et al. WRKY33 negatively regulates anthocyanin biosynthesis and cooperates with PHR1 to mediate acclimation to phosphate starvation[J]. Plant Communications,2024,5(5):100821. doi: 10.1016/j.xplc.2024.100821

    [73]

    HU X Y,GU T Y,KHAN I,et al. Research progress in the interconversion,turnover and degradation of chlorophyll[J]. Cells,2021,10(11):3134. doi: 10.3390/cells10113134

    [74] 王小佳. 雷波脐橙及其早熟单株果实脱绿期的叶绿素降解代谢关键基因表达分析[D]. 成都:四川农业大学,2020.
    [75] 李佳佳,于旭东,蔡泽坪,等. 高等植物叶绿素生物合成研究进展[J]. 分子植物育种,2019,17(18):6013 − 6019.
    [76] 王平荣,张帆涛,高家旭,等. 高等植物叶绿素生物合成的研究进展[J]. 西北植物学报,2009,29(3):629 − 636. doi: 10.3321/j.issn:1000-4025.2009.03.032
    [77]

    LIU X N,ZHAI Y N,LIU J Y,et al. Comparative transcriptome sequencing analysis to postulate the scheme of regulated leaf coloration in Perilla frutescens[J]. Plant Mol Biol,2023,112(3):119 − 142. doi: 10.1007/s11103-023-01342-8

    [78]

    GAN Y,KOU Y P,YAN F,et al. Comparative transcriptome profiling analysis reveals the adaptive molecular mechanism of yellow-green leaf in Rosa beggeriana‘Aurea’[J]. Frontiers in Plant Science,2022,13:845662. doi: 10.3389/fpls.2022.845662

    [79] 吴雨桐. POLGAMMA2CHlH基因在连翘金色叶形成中的作用[D]. 北京:北京林业大学,2023.
    [80]

    ZHANG M,SHEN J S,WU Y T,et al. Comparative transcriptome analysis identified ChlH and POLGAMMA2 in regulating yellow-leaf coloration in Forsythia[J]. Frontiers in Plant Science,2022,14:1009575.

    [81] 张星,廖涛,方叶梅,等. 茶梅黄化叶片中叶绿素代谢基因表达分析[J/OL]. 分子植物育种,1 − 9[2024-07-17]. http://kns.cnki.net/kcms/detail/46.1068.S.20221130.1406.007.html.
    [82]

    ZHANG S Z,WU XL,CUI J,et al. Physiological and transcriptomic analysis of yellow leaf coloration in Populus deltoides Marsh. PLoS One,2019,14(5):e0216879.

    [83]

    GANG H X,LIU G F,CHEN S,et al. Physiological and transcriptome analysis of a yellow-green leaf mutant in birch (Betula platyphylla × B. Pendula)[J]. Forests,2019,10(2):120. doi: 10.3390/f10020120

    [84]

    YANG Y Y,ZHAO L J,WANG J H,et al. Genome-wide identification of DnaJ gene family in Catalpa bungei and functional analysis of CbuDnaJ49 in leaf color formation[J]. Frontiers in Plant Science,2023,14:1116063. doi: 10.3389/fpls.2023.1116063

    [85] 董译阳,王鑫宇,孟南,等. 转基因山杨叶色及生长变异分析[J/OL]. 分子植物种:1 − 10[2023-05-24]. http://k-ns.cnki.net/kcms/detail/46.1068.S.20230421.1603.014.html.
    [86] 曹俐,杨蕴力,李天芳,等. 转BpGLK裂叶桦叶色及生长变异分析[J]. 植物研究,2023,43(3):351 − 360.
    [87]

    LI Y D,GU C R,GANG H X,et al. Generation of a golden leaf triploid poplar by repressing the expression of GLK genes[J]. Forestry Research,2021,1:3.

    [88]

    WU S G,ZHANG H M,WANG R L,et al. GhWRKY33 interacts with GhTIFY10A to synergistically modulate both ageing and JA-Mediated leaf senescence in Arabidopsis[J]. Cells,2022,11(15):2328. doi: 10.3390/cells11152328

    [89]

    YU G H,XIE Z N,LEI S S,et al. The NAC factor LpNAL delays leaf senescence by repressing two chlorophyll catabolic genes in perennial ryegrass[J]. Plant Physiology,2022,189(2):595 − 610. doi: 10.1093/plphys/kiac070

    [90]

    XU Y M,XIAO X M,ZENG Z X,et al. BrTCP7 transcription factor is associated with MeJA-Promoted leaf senescence by activating the expression of BrOPR3 and BrRCCR[J]. International Journal of Molecular Sciences,2019,20(16):3963. doi: 10.3390/ijms20163963

    [91] 董书琦,陈达,秦巧平,等. 高等植物叶绿素和类胡萝卜素代谢研究进展[J]. 植物生理学报,2023,59(5):793 − 802.
    [92]

    WANG Z J,ZHANG L,DONG C,et al. Characterization and functional analysis of phytoene synthase gene family in tobacco[J]. BMC Plant Biology,2021,21(1):32. doi: 10.1186/s12870-020-02816-3

    [93]

    WANG Y G,ZHANG C,XU B,et al. Temperature regulation of carotenoid accumulation in the petals of sweet osmanthus via modulating expression of carotenoid biosynthesis and degradation genes[J]. BMC Genomics,2022,23(1):418. doi: 10.1186/s12864-022-08643-0

    [94] 孟凡来,赵昶灵,段丽斌,等. 高等植物类胡萝卜素的生物降解途径研究进展[J]. 中国农学通报,2013,29(24):143 − 150. doi: 10.11924/j.issn.1000-6850.2012-3207
    [95]

    MAGOME H S,ARAI M S,OYAMA K S,et al. Multiple loss-of-function mutations of carotenoid cleavage dioxygenase 4 reveal its major role in both carotenoid level and apocarotenoid composition in flue-cured mature tobacco leaves[J]. Scientific Reports,2023,13(1):12992. doi: 10.1038/s41598-023-39692-4

    [96]

    SUN Y,BAI P P,GU K J,et al. Dynamic transcriptome and network-based analysis of yellow leaf mutant Ginkgo biloba[J]. BMC Plant Biology,2022,22(1):465. doi: 10.1186/s12870-022-03854-9

图(1)  /  表(2)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-10
  • 修回日期:  2024-09-14
  • 刊出日期:  2025-01-28

目录

/

返回文章
返回