高级检索+

基于深度学习的高分辨率遥感影像林地变化检测

High-Resolution Remote Sensing Image Forest Land Change Detection Based on Deep Learning

  • 摘要: 基于深度学习进行的高分辨率遥感影像林地变化检测,能通过大规模数据训练从双时相高分影像中自动提取林地变化特征,可减少对操作人员的主观经验性依赖,提高林地变化检测效率。本文以浙江省为研究区域,基于World Imagery Wayback高分辨率遥感图像,利用UNet系列、DeepLabV3系列、FCN及SegNet等深度学习模型,通过二分类方法判断林地变化范围。结果表明:(1)本文所使用的各种模型,在测试集上mIoU评估指标均在84.70%以上,Accuracy指标均在92.00%以上,F1-score评估指标均在91.00%以上,Recall评估指标也均在91.00%以上,表现出较好的检测结果。(2)UNet模型各项指标均达到最高,mIoU、Accuracy、F1-score和Recall评估指标分别为89.54%、95.15%、94.44%及94.13%,但各模型在检测结果中均存在不同程度的边缘轮廓模糊、类内连通不完整现象。(3)为解决检测结果中存在的类内连通不完整及轮廓模糊问题,利用SE、SGAM、CBAM等注意力机制改进性能很好的UNet模型,为验证模型改进的有效性以及排除模型结构差异的影响,对DeepLabV3、DeepLabV3P模型也做相同的改进,以形成对照实验。结果显示,利用通道注意力机制改进的UNet+SE模型mIoU指标提高最多,为0.18%。但利用空间注意力机制改进的UNet+SGAM、DeepLabV3+SGAM、DeepLabV3P+SGAM模型,其mIoU指标分别降低了1.01%、0.77%、0.67%,因此在检测林地变化时,通道上的特征重要性大于空间上的特征重要性,需加重关注通道特征,降低关注空间特征。基于深度学习进行的高分辨率遥感影像林地变化检测,在各模型中UNet模型的性能指标表现优秀,且模型的通道重要性大于空间重要性,该结论可为林地变化检测提供重要借鉴。

     

    Abstract: Deep learning offers an efficient approach to forest land change detection by automatically extracting change features from dual-time-phase high-resolution images through large-scale data training, reducing reliance on operator experience and enhancing detection efficiency. Focusing on Zhejiang Province, this study utilized high-resolution remote sensing images from World Imagery Wayback and applied deep learning models, including UNet series, DeepLabV3 series, FCN, and SegNet, for binary classification of forest land changes. All models demonstrated strong performance on the test set, with mIoU above 84.70%, Accuracy above 92%, F1-score above 91.00%, and Recall above 91%. Among them, the UNet model achieved the best results, with mIoU of 89.54%, Accuracy of 95.15%, F1-score of 94.44%, and Recall of 94.13%, though all models showed varying degrees of edge contour blurring and incomplete intra-class connectivity. To address these limitations, the UNet model was improved using attention mechanisms, including SE (Squeeze-and-Excitation), SGAM (Spatial Gated Attention Mechanism), and CBAM (Convolutional Block Attention Module), and similar enhancements were applied to DeepLabV3 and DeepLabV3P models for control experiments. Results showed that the UNet+SE model, leveraging channel attention, achieved the greatest improvement in mIoU (0.18%), while models enhanced with spatial attention (UNet+SGAM, DeepLabV3+SGAM, DeepLabV3P+SGAM) experienced decreases in mIoU by 1.01%, 0.77%, and 0.67%, respectively, indicating that channel features are more critical than spatial features for forest land change detection. These findings confirm the UNet model’s superior performance and highlight the importance of prioritizing channel features, providing valuable insights for forest land change detection using deep learning and high-resolution remote sensing imagery.

     

/

返回文章
返回