高级检索+

公益林生物量估算方法研究

陈蜀蓉, 张 超, 郑超超, 张 伟, 伊力塔, 余树全

陈蜀蓉, 张 超, 郑超超, 张 伟, 伊力塔, 余树全. 公益林生物量估算方法研究[J]. 浙江林业科技, 2015, 35(5): 20-28.
引用本文: 陈蜀蓉, 张 超, 郑超超, 张 伟, 伊力塔, 余树全. 公益林生物量估算方法研究[J]. 浙江林业科技, 2015, 35(5): 20-28.
CHEN Shu-rong, ZHANG Chao, ZHENG Chao-chao, ZHANG Wei, YI Li-ta, YU Shu-quan. Estimation Methods for Biomass of Ecological Forest in Jinyun[J]. Journal of Zhejiang Forestry Science and Technology, 2015, 35(5): 20-28.
Citation: CHEN Shu-rong, ZHANG Chao, ZHENG Chao-chao, ZHANG Wei, YI Li-ta, YU Shu-quan. Estimation Methods for Biomass of Ecological Forest in Jinyun[J]. Journal of Zhejiang Forestry Science and Technology, 2015, 35(5): 20-28.

公益林生物量估算方法研究

基金项目: 浙江省重点科技创新团队项目(2011R50027)
详细信息
  • 中图分类号: S718.55

Estimation Methods for Biomass of Ecological Forest in Jinyun

  • 摘要: 以缙云县公益林为例,利用2010年的117个公益林固定小班监测数据和Landsat5 TM遥感数据,选取遥感变量和地学变量等80个自变量,运用多元线性回归、偏最小二乘回归、随机森林回归和Erf-BP神经网络四种模型,对缙云县公益林生物量进行建模估算,并比较四种方法的优缺点。结果表明:在R2、PRECISION和RMSE方面,随机森林回归优于其他方法,而在VR和BIAS方面,Erf-BP神经网络方法比其他方法更好,但从提高生物量精度和减少均方根误差综合评价,随机森林方法是较好的选择。
    Abstract: Biomass of ecological forest in Jinyun county, Zhejiang province was estimated by multiple linear regression (MLR), partial least squares(PLS) regression, random forest regression and BP neutral network model based on Gaussian error function (Erf-BP), according to data from TM imagery and 117 permanent subcompartments forest management survey in 2010. There were 80 independent variables of geoscience and remote sensing. Results showed that random forest regression had better effect on R2, PRECISION and RMSE, while Erf-BP neural network on VR and BIAS. Comprehensive evaluation on precision and root mean square error indicated that random forest method was a better choice
  • [1] 王云飞,庞勇,舒清态. 基于随机森林算法的橡胶林地上生物量遥感反演研究[J]. 西南林业大学学报,2013(6):38-45.
    [2] 范文义,张海玉,于颖,等. 三种森林生物量估测模型的比较分析[J]. 植物生态学报,2011,35(4):402-410.
    [3] 张茂震,王广兴,葛宏立,等. 基于空间仿真的仙居县森林碳分布估算[J]. 林业科学,2014(11):13-22.
    [4] 娄雪婷,曾源,吴炳方. 森林地上生物量遥感估测研究进展[J]. 国土资源遥感,2011(1):1-8.
    [5] 徐小军,杜华强,周国模,等. 基于遥感植被生物量估算模型自变量相关性分析综述[J]. 遥感技术与应用,2008,23(2):239-247.
    [6] 郭志华,彭少麟,王伯苏. 利用TM数据提取粤西地区的森林生物量[J]. 生态学报,2002,22(11):1 832-1 839.
    [7]

    Hall R J, Skakun R S, Arsenault E J, et al. Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of

计量
  • 文章访问数:  556
  • HTML全文浏览量:  0
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-09-29

目录

    /

    返回文章
    返回