Low Nitrogen Stress on Growth and Physiology of Cunninghamia lanceolata Seedlings
-
摘要: 氮是植物生长发育过程中必不可少的营养元素。以 FK,S39,S3和新 6四个杉木 Cunninghamia lanceolata无性系的萌芽条扦插苗为材料,采用营养液气雾栽培法,分析低氮(low nitrogen,LN)胁迫对杉木不同无性系幼苗生长和生理的影响。结果表明,LN抑制杉木幼苗生长,促进根系的生长,降低叶片长宽比,增加根冠比;LN胁迫使叶片中丙二醛的含量增加,叶绿素 a和叶绿素 b的含量降低,可溶性蛋白的含量增加,超氧化物歧化酶(SOD)和过氧化物歧化酶(POD)活性增加。Abstract: In October of 2013, stem cuttings of four Cunninghamia lanceolata clones FK, S 39, S 3 and Xin 6 were harvested from Kaihua Forest Farm of Zhejiang province and were cultivated by aeroponic. Experiments were carried out on low nitrogen stress (LN) on growth and physiology of seedlings during the next May to September. The results showed that LN could inhibit the growth of seedlings, promote the growth of root system, decrease leaf length breadth ratio, and increase the root/shoot ratio. The content of MDA increased, chlorophyll a and b decreased in treated seedlings. The content of soluble protein, the activity of SOD and POD increased in seedlings treated by LN.
-
Keywords:
- Cunninghamia lanceolata /
- low nitrogen stress /
- growth /
- physiology /
- response
-
-
[1] 李梁,黄剑华,陈志伟,等.作物耐低氮的相关生物学研究进展 [J].上海农业学报,2012,28(02):117-122. [2] 张子义,伊霞,胡博,等.缺氮条件下燕麦根轴细胞的程序性死亡 [J].中国农学通报,2010,26(08):175-178. [3] 赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究 [J].生态科学,1998,17(02):39-44. [4] RICHARD-MOLARD C,KRAPP A,BRUN F,et al. Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes[J]. J Exp Bot,2008,59(4):779-791.
[5] CRAWFORD N M,GLASS A D. Molecular and physiological aspects of nitrate uptake in plants[J]. Trend Plant Sci,1998,3(10):389-395.
[6] ZHANG H,FORDE B G. Regulation of Arabidopsis root development by nitrate availability[J]. J Exp Bot,2000,51(342):51-59.
[7] WALKER R L,BURNS I G,MOORBY J. Responses of plant growth rate to nitrogen supply: a comparison of relative addition and N interruption treatments[J]. J Exp Bot,2001,52(355):309-317.
[8] 林郑和,陈荣冰,陈常颂.植物对氮胁迫的生理适应机制研究进展 [J].湖北农业科学,2011,50(23):4761-4764. [9] ZHAO L Z. Efficient Management of Nitrogen Fertilizers for Flooded Rice in Relation to Nitrogen Transformations in Flooded Soils[J]. Pedosphere,2014,2(2):97-114.
[10] ZHANG S,CAI G,WANG X,et al. Losses of urea-nitrogen applied to maize grown on a calcareous fluvo-aquic soil in North China Plain[J]. Pedosphere,1992,2(2):171-178.
[11] 郑仁华.杉木遗传育种研究进展与对策 [J].世界林业研究,2005,18(13):63-65. [12] 孙长忠,沈国舫. 我国主要树种人工林生产力现状及潜力的调查研究Ⅰ.杉木、马尾松人工林生产力研究[J].林业科学研究,2000,13(6):613-621. [13] 郑璐嘉,黄志群,何宗明,等.不同林龄杉木人工林细根氮稳定同位素组成及其对氮循环的指示 [J].生态学报,2016,36:2185-2191. [14] 高峻凤.植物生理学实验指导 [M].高等教育出版社,2006:159-160. [15] 张宪政.植物叶绿素含量测定 ——丙酮乙醇混合液法 [J].辽宁农业科学,1986,(3):26-28. [16] 中国科学院上海植物生理研究所.现代植物生理学实验指南 [M].科学出版,2004:214-215. [17] 邹琦. 植物生理学试验指导 [M].北京:中国农业出版社,2000. [18] ZHAO D,REDDY K R,KAKANI V G,et al. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum[J]. Eu J Agron,2005,22(4):391-403.
[19] 任永哲.低氮胁迫对不同小麦品种苗期性状的影响 [J].种子,2012,31(05):91-94. [20] CHUN L,MI G,LI J,et al. Genetic analysis of maize root characteristics in response to low nitrogen stress[J]. Plant Soil,2005,276(1-2): 369-382.
[21] 张定一,张永清,杨武德,等.不同基因型小麦对低氮胁迫的生物学响应 [J].作物学报,2006,32(09):1349-1354. [22] 卢从明,张其德,匡廷云,等.水分胁迫抑制水稻光合作用的机理 [J].作物学报,1994,40(05):601-606. [23] HUANG Z A,JIANG D A,YANG Y,et al. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants[J]. Photosynthetica,2004,42(3):357-364.
[24] 杨晴,刘奇勇,白岩,等.冬小麦不同叶层叶绿素和可溶性蛋白对氮磷肥的响应 [J].麦类作物学报,2009,29(01):128-133. [25] PATTERSON T,MOSS D,BRUN W. Enzymatic changes during the senescence of field-grown wheat[J]. Crop Sci,1980,20(1):15-18.
[26] 潘琦,邹国燕,宋祥甫.硝氮胁迫对不同沉水植物生理生长的影响 [J].上海环境科学,2010,29(01):16-20. [27] 刘宇,韩林,王思远,等.低氮胁迫对超高产玉米叶片保护酶活性的影响 [J].吉林农业大学学报,2011,33(01):5-8,13.
计量
- 文章访问数: 297
- HTML全文浏览量: 0
- PDF下载量: 142