高级检索+

丛枝菌根真菌提高植物非生物胁迫耐受性研究进展

李晓芸, 伊力塔, 李彦, 刘美华

李晓芸, 伊力塔, 李彦, 刘美华. 丛枝菌根真菌提高植物非生物胁迫耐受性研究进展[J]. 浙江林业科技, 2022, 42(1): 101-110.
引用本文: 李晓芸, 伊力塔, 李彦, 刘美华. 丛枝菌根真菌提高植物非生物胁迫耐受性研究进展[J]. 浙江林业科技, 2022, 42(1): 101-110.
LI Xiao-yun, YI Li-ta, LI Yan, LIU Mei-hua. Advances in Research on Plant Tolerance to Abiotic Stress by Arbuscular Mycorrhizal Fungi[J]. Journal of Zhejiang Forestry Science and Technology, 2022, 42(1): 101-110.
Citation: LI Xiao-yun, YI Li-ta, LI Yan, LIU Mei-hua. Advances in Research on Plant Tolerance to Abiotic Stress by Arbuscular Mycorrhizal Fungi[J]. Journal of Zhejiang Forestry Science and Technology, 2022, 42(1): 101-110.

丛枝菌根真菌提高植物非生物胁迫耐受性研究进展

基金项目: 国家自然科学基金项目项目(31971623);宁波市自然科学基金项目(2019A610412)
详细信息
    作者简介:

    李晓芸,硕士,从事森林生态学研究;E-mail: lxy0216@stu.zafu.edu.cn。

    通讯作者:

    刘美华,副教授,从事森林生态学研究; E-mail: mhliu@zafu.edu.cn。

  • 中图分类号: Q945.78

Advances in Research on Plant Tolerance to Abiotic Stress by Arbuscular Mycorrhizal Fungi

  • 摘要: 丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF或AM真菌)是一种在土壤中广泛存在的有益真菌,能与地球上80 %左右陆生植物根系共生形成丛枝菌根结构。AM真菌能通过与宿主植物交换碳源,促进宿主植物对N和P等无机营养元素的吸收,提高植株生产力和抵抗非生物胁迫的能力。全球气候变化和化肥农药的使用加剧了非生物胁迫对植物生产力的影响,引起生态系统退化。利用AM真菌协助植物应对多种逆境胁迫,对提高植物生产力具有重要意义。文章综述了AM真菌与宿主植物的共生机制,以及AM真菌帮助宿主植物应对盐、重金属、干旱、极端温度等非生物胁迫方面的研究进展,系统探讨了AM真菌提高植物逆境胁迫耐受性的机理,为提高植物适应逆境胁迫能力提供一定的理论依据。
    Abstract: Research achievements were reviewed on arbuscular mycorrhizal fungi (AMF) symbiotic mechanism, and research progress was described on AMF in increasing tolerance to salt, heavy metals, drought and high temperature stress on host plants by enhancing photosynthesis, uptake nutrient elements and water use efficiency. Suggestions were put forwarded on further study on large scale purification and culture technique, selection and identification of different AMF, their operation mechanism and relations as well as on mycobiont of soil-AMF-plant and its mechanism.
  • [1]

    JUNG S C,MARTINEZ-MEDINA A,LOPEZ-RAEZ J A,et al. Mycorrhiza-induced resistance and priming of plant defenses[J]. J Chem Ecol, 2012,38(6):651-664.

    [2]

    VANDER HEIJDEN M G A,MARTIN F M,SELOSSE M-A,et al. Mycorrhizal ecology and evolution: the past, the present, and the future[J]. New Phytol,2015,205(4):1406-1423.

    [3]

    CAMENZIND T,RILLIG M C. Extraradical arbuscular mycorrhizal fungal hyphae in an organic tropical montane forest soil [J]. Soil Biol Biochem,2013,64(9):96-102.

    [4]

    SALAM E A,ALATAR A,EL-SHEIKH M A. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose[J]. Saudi J Biol Sci,2017,25(8):1772-1780.

    [5]

    ZHAN F D,LI B,JIANG M,et al. Effects of arbuscular mycorrhizal fungi on the growth and heavy metal accumulation of bermudagrass [Cynodon dactylon (L.) Pers.] grown in a lead-zinc mine wasteland[J]. Int J Phytoremediat,2019,21(9):849-856.

    [6] 王颖颖,赵冰,李莹. 丛枝菌根真菌对杜鹃花耐热性的影响[J]. 浙江农林大学学报,2019,36(4):733-740.
    [7] 叶林. 丛枝菌根真菌对西瓜盐碱胁迫的缓解效应及其调控机理[D]. 杨凌:西北农林科技大学,2019.
    [8]

    GRIGULIS K,LAVOREL S,KRAINER U,et al. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services[J]. J Ecol,2013,101(1):47-57.

    [9]

    GONG M G,TANG M,CHEN H,et al. Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress[J]. New For,2012,44(3):399-408.

    [10]

    SELOSSE M A,STRULLU-DERRIEN C,MARTIN F M,et al. Plants, fungi and oomycetes: a 400-million years affair that shapes the biosphere[J]. New Phytol,2015,206(2):501-506.

    [11]

    NAHEEDA B,CHENG Q,ABASS A M,et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance[J]. Front Plant Sci,2019,10:1068.

    [12] 韦莉莉,卢昌熠,丁晶,等. 丛枝菌根真菌参与下植物-土壤系统的养分交流及调控[J]. 生态学报,2016,36(14):4233-4243.
    [13]

    PRINGLE A,BEVER J D,GARDES M,et al. Mycorrhizal symbioses and plant invasions[J]. Annu Rev Ecol Evol Syst,2009,40(1):699-715.

    [14]

    JIANG Y N,WANG W X,XIE Q J,et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science,2017,356(6343):1172-1175.

    [15]

    PARNISKE M. Arbuscular mycorrhiza: the mother of plant root endosymbiosis[J]. Nat Rev Microbiol,2008,6(10):763-775.

    [16]

    TEDERSOO L,BAHRAM M,ZOBEL M. How mycorrhizal associations drive plant population and community biology[J]. Science,2020,367(6480):eaba1223.

    [17]

    HASHEM A,ALQARAWI A A,RADHAKRISHNAN R,et al. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L.[J]. Saudi J Biol Sci,2018,25(6): 1102-1114.

    [18] 邱佳佳. 丛枝菌根真菌与玉米互作影响磷吸收的机制研究[D]. 泰安:山东农业大学,2017.
    [19] 薛英龙,李春越,王苁蓉,等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制[J]. 水土保持学报,2019,33(6):10-20.
    [20]

    SCHNEPF A,JONES D,ROOSE T. Modelling nutrient uptake by individual hyphae of arbuscular mycorrhizal fungi: temporal and spatial scales for an experimental design[J]. Bull Math Biol,2011,73(9):2175-2200.

    [21]

    DUAN T Y,FACELLI E,SMITH S E,et al. Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil[J]. Soil Biol Biochem,2011,2011,43(3): 571-578.

    [22] 何铮. 镉胁迫下丛枝菌根真菌对大叶女贞生长及镉耐受性的影响[J]. 西部林业科学,2020,49(1):87-91.
    [23] 路成成,蔡柏岩. AM真菌改善植物磷营养吸收和转运机制的研究进展[J]. 中国农学通报,2020,36(26):50-54.
    [24]

    SMITH S E,JAKOBSEN I,GR?NLUND M,et al. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J]. Plant Physiol,2011,156(3):1050-1057.

    [25] 王敏强,吴沛鸿,沈益康,等. 盐胁迫下接种丛枝菌根真菌对甜菊生长和氮磷吸收的影响[J]. 应用与环境生物学报,2018,24(5):960-966.
    [26]

    WANG F,JIANG R F,KERTESZ M A,et al. Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (Zea mays L.)[J]. Soil Biol and Biochem,2013,65(10):69-74.

    [27] 朱凌骏. 菌根真菌对提高皂荚和榉树耐盐性及促进氮磷吸收的作用研究[D]. 南京:南京林业大学,2019.
    [28] 岳海,何双凌,耿建建,等. 水分胁迫下丛枝菌根真菌对澳洲坚果幼苗磷利用效率的影响[J]. 中国油料作物学报,2020,42(2):285-291.
    [29] 任爱天,鲁为华,杨洁晶,等. 不同磷水平下AM真菌对紫花苜蓿生长和磷利用的影响[J]. 中国草地学报,2014,36(6):72-78.
    [30] 刘进法,夏仁学,王明元,等. 接种丛枝菌根真菌对枳吸收利用磷酸铝的影响[J]. 应用生态学报,2008,19(10): 2155-2160.
    [31]

    LEISER W L,OLATOYE M O,RATTUNDE H F W,et al. No need to breed for enhanced colonization by arbuscular mycorrhizal fungi to improve low-P adaptation of West African sorghums[J]. Plant Soil,2016,401(1):51-64.

    [32]

    HAWKINS H-J. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi[J]. Plant Soil,2000,226(2):275-285.

    [33] 陈永亮,陈保冬,刘蕾,等. 丛枝菌根真菌在土壤氮素循环中的作用[J]. 生态学报,2014,34(17):4807-4815.
    [34]

    JANSA J,FORCZEK S T,ROZMO? M,et al. Arbuscular mycorrhiza and soil organic nitrogen: network of players and interactions[J]. Chem Biol Tech Agric,2019,6(1):10.

    [35]

    HODGE A,STORER K. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems[J]. Plant Soil,2015,386(1):1-19.

    [36]

    HODGE A,CAMPBELL C D,FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature,2001,413(6853):297-299.

    [37]

    HODGE A,FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling [J]. Proc Natl Acad Sci,2010,107(31):13754-13759.

    [38]

    STORER K T. Interactions between arbuscular mycorrhizal fungi and soil greenhouse gas fluxes[D]. Toronto:University of York,2013.

    [39]

    SINGH L P,GILL S S,TUTEJA N. Unraveling the role of fungal symbionts in plant abiotic stress tolerance[J]. Plant Signal Behav,2011,6(2):175-191.

    [40]

    TUTEJA N. Abscisic acid and abiotic stress signaling[J]. Plant Signal Behav,2007,2(3):135-138.

    [41]

    MILLAR N S,BENNETT A E. Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi[J]. Oecologia,2016,182(3):625-641.

    [42]

    JIN H,PLAHA P,PARK J Y,et al. Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil[J]. Plant Sci,2006,170(6):1081-1086.

    [43]

    QIU Y J,ZHANG N L,ZHANG L L,et al. Mediation of arbuscular mycorrhizal fungi on growth and biochemical parameters of Ligustrum vicaryi in response to salinity[J]. Physiol Mol Plant Pathol,2020,112:101522.

    [44]

    JIA X-M,ZHU Y-F,HU Y,et al. Integrated physiologic, proteomic, and metabolomic analyses of Malus halliana adaptation to saline-alkali stress[J]. Hortic Res,2019,6:91.

    [45] 范海霞,赵飒,辛国奇,等. 外源NO对盐胁迫下菊花幼苗生理特性的影响[J]. 北方园艺,2020,(19):70-77.
    [46]

    WU Q S,ZOU Y N. Arbuscular mycorrhizal symbiosis improves growth and root nutrient status of citrus subjected to salt stress[J]. Sci Asia,2009,35(4):388-391.

    [47] 贺忠群,贺超兴,闫妍,等. 盐胁迫下丛枝菌根真菌对番茄吸水及水孔蛋白基因表达的调控[J]. 园艺学报,2011,38(2):273-280.
    [48] 陈婕. 丛枝菌根真菌(AMF)提高刺槐耐盐性机制的研究[D]. 杨凌:西北农林科技大学,2018.
    [49]

    AIT-EL-MOKHTAR M,BASLAM M,BEN-LAOUANE R,et al. Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost[J]. Front Sustain Food Syst,2020,4:131.

    [50]

    TURGUT YI?IT A,YILMAZ O,UZ?LDAY B,et al. Plant response to salinity: an analysis of ROS formation, signaling, and antioxidant defense[J]. Turk J Bot,2020,44(1):1-13.

    [51]

    ZHU J K. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol,2003,6(5):441-445.

    [52]

    PORCEL R,REDONDOGóMEZ S,MATEOSNARANJO E,et al. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress[J]. J Plant Physiol,2015,185(2):75-83.

    [53]

    LIN J,WANG Y,SUN S,et al. Effects of arbuscular mycorrhizal fungi on the growth,photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition[J]. Sci Total Environ,2017,576(1):234-241.

    [54]

    TIWARI J,MA Y,BAUDDH K. Arbuscular mycorrhizal fungi: an ecological accelerator of phytoremediation of metal contaminated soils[J]. Arch Agron Soil Sci,2020:1-14.

    [55]

    RIAZ M,KAMRAN M,FANG Y,et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review[J]. J Hazard Mater,2021,402:123919.

    [56]

    IANNONE M F,ROSALES E P,GROPPA M D,et al. Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium[J]. Protoplasma,2010,245(1):15-27.

    [57]

    CHANDRA R,KANG H. Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids[J]. For Sci Technol,2016,12(2):55-61.

    [58]

    DHALARIA R,KUMAR D,KUMAR H,et al. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants[J]. Agron,2020,10(6):815.

    [59]

    RACHNA V,TAPWAL ASHWANI,KUMAR DINESH,et al. Vesicular arbuscular mycorrhizal diversity in some important ethnomedicinal plants of Western Himalaya[J]. Med Plants,2019,11(3):279-285.

    [60]

    SESHADRI B,BOLAN N S,CHOPPALA G,et al. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil[J]. Chemosphere,2017,184:197-206.

    [61]

    ZHANG X,ZHANG H,ZHANG Y,et al. Arbuscular mycorrhizal fungi alter carbohydrate distribution and amino acid accumulation in Medicago truncatula under lead stress[J]. Environ Exp Bot,2020,171:103950.

    [62]

    GOHRE V,PASZKOWSKI U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation[J]. Planta,2006,223(6):1115-1122.

    [63]

    KRUPA P,KOZDRóJ J. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus Sylvestris L.) seedlings[J]. Water Air Soil Pollut,2006,182(1):83-90.

    [64]

    BAGO B,PFEFFER P E,ABUBAKER J,et al. Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid[J]. Plant Physiol,2003,131(3):1496-1507.

    [65]

    ROZPADEK P,WEZOWICZ K,STOJAKOWSKA A,et al. Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity[J]. Chemosphere,2014,112:217-224.

    [66] 陈良华,胡相伟,杨万勤,等. 接种丛枝菌根真菌对雌雄美洲黑杨吸收铅镉的影响[J]. 环境科学学报,2017,37(1):308-317.
    [67]

    LI H,LUO N,ZHANG L J,et al. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice[J]. Sci Total Environ. 2016,571(21):1183-1190.

    [68]

    SADIA K,ASMA B,RIFFAT N M. Role of arbuscular mycorrhizal fungi in phytoremediation of heavy metals and effects on growth and biochemical activities of wheat (Triticum aestivum L.) plants in Zn contaminated soils[J]. Afr J Biotechnol,2016,15(20):872-883.

    [69]

    ORLOWSKA E GODZIK B,TURNAU K. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L.[J]. Environ Pollut,2012,168(9):121-130.

    [70]

    HE Y M,FAN X M,ZHANG G Q,et al. Effects of arbuscular mycorrhizal fungi and dark septate endophytes on maize performance and root traits under a high cadmium stress[J]. S Afr J Bot,2020,134(6):415-423.

    [71]

    HU S S,HU B,CHEN Z B,et al. Antioxidant response in arbuscular mycorrhizal fungi inoculated wetland plant under Cr stress[J]. Environ Res,2020,191:110203.

    [72]

    AL-ARJANI A F,HASHEM A,ABD-ALLAH E F. Arbuscular mycorrhizal fungi modulates dynamics tolerance expression to mitigate drought stress in Ephedra foliata Boiss[J]. Saudi J Biol Sci,2020,27(1):380-394.

    [73] 毕银丽. 丛枝菌根真菌在煤矿区沉陷地生态修复应用研究进展[J]. 菌物学报,2017,36(7):800-806
    [74]

    JASTROW J D,MILLER R M,LUSSENHOP J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie[J]. Soil Biol Biochem,1998,30(7):905-916.

    [75]

    CZARNES S,HALLETT P D,BENGOUGH A G,et al. Root-and microbial- derived mucilages affect soil structure and water transport[J]. Eur J Soil Sci,2000,51(3):435-443.

    [76]

    RILLIG M C,STEINBERG P D. Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification[J]. Soil Biol Biochem,2002,34(9):1371-1374.

    [77]

    ZARIK L,MEDDICH A,HIJRI M,et al. Use of arbuscular mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G[J]. C R Biol,2016,339(5-6):185-196.

    [78]

    PORCEL R,AROCA R,RUIZ-LOZANO J M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review[J]. Agron Sustain Dev, 2011,32(1):181-200.

    [79]

    ZHANG Z F,ZHANG J C,XU G P,et al. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress[J]. New For,2019,50(4):593-604.

    [80]

    BUITINK G J. Mechanisms of plant desiccation tolerance[J]. Trends Plant Sci,2001,6(9):431-438.

    [81]

    ZHAO R X,GUO W,BI N,et al. Arbuscular mycorrhizal fungi affect the growth,nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress[J]. Appl Soil Ecol,2015,88(4):41-49.

    [82]

    ZHANG Z F,ZHANG J C,HUANG Y Q. Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions [J]. New For,2014,45(4):545-556.

    [83]

    PORCEL R,RUIZ-LOZANO J M. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress[J]. J Exp Bot,2004,55(403):1743-1750.

    [84]

    HE F,SHENG M,TANG M. Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress[J]. Front Plant Sci,2017,8:183.

    [85]

    MATHUR S,TOMAR R S,JAJOO A. Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress[J]. Photosynth Res,2019,139(1):227-238.

    [86]

    KRASENSKY J,JONAK C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. J Exp Bot,2012,63(4):1593-1608.

    [87]

    LI Y,MATSUBARA Y,MIYAWAKI C,et al. Temperature stress tolerance and increase in antioxidative enzyme activities in mycorrhizal strawberry plants[J]. Acta Hortic,2008,774:391-396.

    [88]

    LATEFA A A H,HE C X. Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress[J]. Acta Physiol Plant,2011,33(4):1217-1225.

    [89]

    ZHU X K,SONG F B,LIU S Q,et al. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress[J]. Plant Soil,2011,346(1):189-199.

    [90]

    ZHU X K,SONG F B,XU H W. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress[J]. Mycorrhiza,2010,20(5):325-332.

    [91]

    LIU Z L,MA L N,HE X Y,et al. Water strategy of mycorrhizal rice at low temperature through the regulation of PIP aquaporins with the involvement of trehalose[J]. Appl Soil Ecol,2014,84(12):185-191.

    [92]

    HAJIBOLAND R,JOUDMAND A,ALIASGHARZAD N,et al. Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley[J]. Crop Pasture Sci,2019,70(3):218-233.

    [93]

    AHANGER M A,AGARWAL R M. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L.)[J]. Protoplasma,2017,254(4):1471-1486.

    [94]

    LIU A R,CHEN S C,CHANG R,et al. Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity[J]. J Plant Res,2014,127(6):775-785.

    [95]

    CHEN S C,JIN W J,LIU A R,et al. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress[J]. Sci Hortic,2013,160(3):222-229.

    [96] 邢红爽,张瑞,郭绍霞. 高温胁迫下丛枝菌根真菌对百合耐热性的影响[J]. 青岛农业大学学报,2018,35(04):258-264.
    [97]

    LIU X M,XU Q L,LI Q G,et al. Physiological responses of the two blueberry cultivars to inoculation with an arbuscular mycorrhizal fungus under low-temperature stress[J]. J Plant Nutr,2017,40(18):2562-2570.

    [98] 张春楠,张瑞芳,王红,等.丛枝菌根真菌影响作物非生物胁迫耐受性的研究进展[J]. 微生物学通报,2020,47(11):3880-3891.
    [99] 姜朦,杨洪一. 丛枝菌根真菌对植物抗非生物胁迫研究进展[J]. 黑龙江农业科学,2020(09):117-121.
    [100] 赛牙热木·哈力甫,邓勋,宋小双,等. 外生菌根真菌对植物促生抗逆作用机制研究进展[J]. 世界林业研究,2020,34(01):19-24.
计量
  • 文章访问数:  286
  • HTML全文浏览量:  0
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-10-09
  • 刊出日期:  2022-01-14

目录

    /

    返回文章
    返回