Citation: | DENG Guoyou, FANG Ru, XU Zai’en, WU Xiaoming, TANG Cheng, LUO Youbo, HE Qinghai. Exploring Functional Group Classification Based on Growth Forms and Leaf Characteristics: A Case Study of the Secondary Evergreen Broad-leaved Forest in the Shanmaling Area of Western Zhejiang[J]. Journal of Zhejiang Forestry Science and Technology, 2024, 44(5): 16-23. DOI: 10.3969/j.issn.1001-3776.2024.05.003 |
Using survey data from 575 plots across 23 sample sites in the secondary evergreen broad-leaved forests of western Zhejiang as an example, this study investigates the classification of species into functional groups. A functional group classification system was established based on two major factors: growth form and leaf characteristics, and it was applied to study the structural characteristics of the target plant communities in the western Zhejiang region. The results indicate that the secondary evergreen broad-leaved forests in the study area include 17 functional groups. A comprehensive diagram of functional group structure was constructed based on the number of species, growth forms, and leaf characteristics. Analysis of the target community’s functional group structure diagram shows that the functional group composition of the target community completely aligns with the characteristics of secondary evergreen broad-leaved forests: the proportion of evergreen functional groups is significantly higher than that of deciduous functional groups, and the proportion of broad-leaved functional groups is much greater than that of coniferous functional groups. In the tree layer, the proportion of large, medium, and small tree functional groups decreases as the diameter class increases, fully matching the structural characteristics of secondary forests. The analysis results of this study fully demonstrate that both the functional group classification system and the comprehensive diagram of functional group structure are applicable to the study of evergreen broad-leaved forest communities, particularly in the collection and organization of community sample data, and they possess strong practicality
[1] |
WOODWARD F I,CRAMER W. Plant functional types and climatic change:introduction[J]. Journal of Vegetation Science,1996,7(3):306 − 308. doi: 10.1111/j.1654-1103.1996.tb00489.x
|
[2] |
范玉龙,刘慧敏,胡楠,等. 伏牛山自然保护区森林生态系统植物功能群光合特性[J]. 生态学报,2016,36(15):4609 − 4616.
|
[3] |
MCGILL B J,ENQUIST B J,WEIHER E,et al. Rebuiding community ecology from functional traits[J]. Trends in Ecology & Evolution,2006,21(4):178 − 185.
|
[4] |
孟婷婷,倪健,王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报,2007,31(1):150 − 165. doi: 10.3321/j.issn:1005-264X.2007.01.019
|
[5] |
MABRY C,ACKED Y D,GERHARDT F. Landscape and species-level distribution of morphological and life history traits in a temperate woodland flora[J]. Journal of Vegetation Science,2000,11:213 − 224. doi: 10.2307/3236801
|
[6] |
柳静,胡楠,丁圣彦,等. 伏牛山自然保护区植物功能群组成种的生态位研究[J]. 武汉植物学研究,2008,26(6):595 − 599.
|
[7] |
DIZA S,CABIDO M. Plant functional types and ecosystem function in relation to global change[J]. Journal of Vegetation Science,1997,8:463 − 474. doi: 10.2307/3237198
|
[8] |
檀文炳,王国安,韩家懋,等. 长白山不同功能群植物碳同位素及其对水分利用效率的指示[J]. 科学通报,2009,54(13):1912 − 1916.
|
[9] |
MICHELLE M R,WESTOBY M. 1992. Classifying plants into groups on the basis of association s of in dividual traits evidence from Australian semiarid woodlands[J]. Journal of Ecology,80:417 − 424.
|
[10] |
SHAH S,SHRESTHA K K,SCHEIDEGGER C. Variation in Plant Functional Traits along Altitudinal Gradient and Land Use Types in Sagarmatha National Park and Buffer Zone,Nepal[J]. American Journal of Plant Sciences,2019,10(4):595 − 614. doi: 10.4236/ajps.2019.104043
|
[11] |
藏润国,张志东. 热带森林植物功能群及其动态研究进展[J]. 生态学报,2010,30(12):3289 − 3296.
|
[12] |
曾庆圣,董辉,宋霞,等. 化州不同林龄人工林土壤养分及林下植物功能群特征研究[J]. 热带林业2021,49(1):28 − 34.
|
[13] |
李萌,陈永康,徐浩成,等. 不同间伐强度对南亚热带杉木人工林下植物功能群的影响[J]. 生态学报,2020,40(14):(14):4985 − 4993.
|
[14] |
袁丛军,喻理飞,严令斌,等. 黔中岩溶区不同群落演替阶段植物功能群叶片化学计量特征[J]. 西部林业科学,2017,46(2):124 − 132.
|
[15] |
仲磊,刘菊莲,丁文勇,等. 浙江省不同演替阶段的低海拔次生林植物功能群结构的比较研究[J]. 浙江大学学报(理学版),2014,41(5):593 − 599,610. doi: 10.3785/j.issn.1008-9497.2015.05.019
|
[16] |
姚雪芹,毕润成,张钦弟,等. 山西太岳山辽东栎群落木本植物功能群分类[J]. 西北植物学报,2015,35(6):1246 − 1253. doi: 10.7606/j.issn.1000-4025.2015.06.1246
|
[17] |
金超,吴初平,丁易,等. 午潮山常绿次生阔叶林主要木本植物功能群及其演替特征[J]. 生态学报,2021,41(8):3053 − 3066.
|
[18] |
张志冬,藏润国,丁易. 海南岛霸王岭热带天然林景观中木本植物功能群划分及其潜在分布[J]. 林业科学,2009,45(10):1 − 8. doi: 10.11707/j.1001-7488.20091001
|
[19] |
陈海生,丁坚钢. 海拔高度对浙江省天台山森林生态系统植物功能群组成的影响[J]. 浙江林业科技,2013,33(5):91 − 93. doi: 10.3969/j.issn.1001-3776.2013.05.019
|
[20] |
温远光,左花,朱宏光,等. 连栽对桉树人工林植被盖度、物种多样性及功能群的影响[J]. 广西科学,2014,21(5):463 − 468,483. doi: 10.3969/j.issn.1005-9164.2014.05.005
|
[21] |
宋永昌,陈小勇,王希华. 中国常绿阔叶林研究的回顾与展望[J]. 华东师范大学学报(自然科学版),2005(1):1 − 8. doi: 10.3969/j.issn.1000-5641.2005.01.001
|
[22] |
谢益君,陆晓明,蓝嘉川,等. 广西大明山常绿阔叶林功能群问的功能性状关系[J]. 南方农业学报,2013,44(9):1504 − 1510. doi: 10.3969/j:issn.2095-1191.2013.9.1504
|
[23] |
HOOPER D U,CHAPIN F S III,EWEL J J,et a1. Effects of biodiversity on ecosystem functioning:a consensus of current knowledge[J]. Ecological Monographs,2005,75:3 − 35. doi: 10.1890/04-0922
|
[24] |
何春梅,刘润清,杨治春,等. 秦岭皇冠暖温性落叶阔叶林物种组成与群落结构[J]. 应用生态学报,2021,32(8):2737 − 2744.
|
[25] |
胡正华,于明坚,方腾,等. 浙江古田山自然保护区森林群落特征研究[J]. 浙江林业科技,2002,22(6):1 − 4.
|
[26] |
陈亚锋,余树全,严晓素,等. 浙江桐庐3种森林类型群落结构[J]. 浙江农林大学学报,2011,28(3):408 − 415. doi: 10.3969/j.issn.2095-0756.2011.03.010
|
[27] |
田立新,吴初平,杨少宗,等. 浙江杭州午潮山亚热带常绿阔叶林群落结构和物种组成[J]. 应用生态学报,2020,31(6):(6):1909 − 1915.
|
[28] |
中国科学院植物研究所系统与进化植物学国家重点实验室. iPlant. cn—中国植物+物种信息系统[EB/OL]. http://www.iplant.cn/info/Cunninghamia%20lanceolata?t=z,2019.
|
[29] |
浙江植物志编辑委员会. 浙江植物志[M]. 杭州:浙江科学技术出版社,1992 − 1993.
|
[30] |
浙江植物志(新编)编辑委员会. 浙江植物志(新编)[M]. 杭州:浙江科学技术出版社,2020 − 2021.
|
[31] |
余树全. 浙江淳安天然次生林演替的定量研究[J]. 林业科学,2003,39(1):17 − 22. doi: 10.3321/j.issn:1001-7488.2003.01.003
|
[32] |
袁士云,张宋智,刘文桢,等. 小陇山辽东栎次生林的结构特征和物种多样性[J]. 林业科学,2010,46(5):27 − 34. doi: 10.11707/j.1001-7488.20100505
|
[33] |
俞昀,白小军,王志一. 大兴安岭次生林区不同龄级落叶松(Larix gmelinii)生态位特征和竞争关系[J]. 生态学报,2022,42(12):4912 − 4921.
|