Advanced Search+
WAN Zhong, GU Xiaobo, FENG Bojie, CHEN Bingyu, HOU Zhiying, LI Jian, ZHOU Tianhuan. Analysis of Differences in Morphological Indicators and Nutritional Components of 37 Carya illinoinensis Germplasms[J]. Journal of Zhejiang Forestry Science and Technology, 2024, 44(5): 62-72. DOI: 10.3969/j.issn.1001-3776.2024.05.008
Citation: WAN Zhong, GU Xiaobo, FENG Bojie, CHEN Bingyu, HOU Zhiying, LI Jian, ZHOU Tianhuan. Analysis of Differences in Morphological Indicators and Nutritional Components of 37 Carya illinoinensis Germplasms[J]. Journal of Zhejiang Forestry Science and Technology, 2024, 44(5): 62-72. DOI: 10.3969/j.issn.1001-3776.2024.05.008

Analysis of Differences in Morphological Indicators and Nutritional Components of 37 Carya illinoinensis Germplasms

More Information
  • Received Date: May 12, 2024
  • Revised Date: August 26, 2024
  • Fruit morphological indices and nutritive compositions were measured, differences and correlations were examined, and 37 different pecan (Carya illinoinensis) germplasms were used as materials to comprehensively evaluate the 37 pecan germplasms. The findings indicated that there were substantial differences in the morphological indices of the various pecan germplasms, with ZL42 having the greatest fresh fruit mass and kernel weight, ZL58 having the highest kernel yield, reaching 46.2%, and ML11 having the highest seed yield (43.98%). The fresh fruit mass was positively correlated with kernel weight and kernel mass, according to the correlation analysis of fruit morphological indicators, with correlation coefficients of 0.837 and 0.771, respectively. Fresh fruit mass, kernel weight, kernel mass, kernel yield, seed yield, and shell thickness were found to have a positive leading function in the principal component analysis, while seed shape index played a negative leading role. ZL42, HL30, ZL59, ZL19, and HL38 showed higher comprehensive evaluation in morphological indicators. The pecan had an average crude fat level of 67.98%, with HL43 having the greatest crude fat concentration. ML17 had the highest unsaturated fatty acid content, ZL57 had the highest oleic acid content, and HL40 had the highest linoleic acid content. HL40 also had the highest content of essential amino acids, umami amino acids, sweet amino acids, and medicinal amino acids. The pecan germplasms with better comprehensive evaluations were ZL42, ZL57, ZL58, ZL59, ML3, ML17, ML11, ML29, HL29, HL30, and HL40.

  • [1]
    李健. 薄壳山核桃种质资源生物学特性研究及遗传多样性分析[D]. 杭州:浙江农林大学,2018.
    [2]
    郑小琴,谭鹏鹏,冯刚,等. 薄壳山核桃愈伤组织诱导的优化[J]. 分子植物育种,2020,18(11):3704 − 3712.
    [3]
    MAHESH V,H K H,P S N,et al. Biochemical composition and immunological comparison of select pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars[J]. Journal of agricultural and food chemistry,2007,55(24):9899 − 9907.
    [4]
    PEREIRA J A,OLIVEIRA I,SOUSA A,et al. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars[J]. Food Chem Toxicol,2008,46(6):2103 − 2111. doi: 10.1016/j.fct.2008.02.002
    [5]
    OZRENK K,JAVIDIPOUR I,YARILGAC T,et al. Fatty acids,tocopherols,selenium and total carotene of pistachios (P. vera L.) from Diyarbakir (Southeastern Turkey) and walnuts (J. regia L.) from Erzincan (Eastern Turkey)[J]. Food Sci Technol Int,2012,18(1):55 − 62. doi: 10.1177/1082013211414174
    [6]
    陈文静,刘翔如,邓秋菊,等. 薄壳山核桃果实发育及脂肪酸累积变化规律[J]. 经济林研究,2016,34(02):50 − 55.
    [7]
    常君,李川,姚小华,等. 薄壳山核桃无性系含油率及脂肪酸组成分析[J]. 西南师范大学学报(自然科学版),2017,42(08):51 − 57.
    [8]
    程铁飞. 薄壳山核桃育苗与造林技术[J]. 现代农业科技,2020(01):129 − 131. doi: 10.3969/j.issn.1007-5739.2020.01.082
    [9]
    张汇慧,吴彩娥,李永荣,等. 不同品种薄壳山核桃营养成分比较[J]. 南京林业大学学报(自然科学版),2014,38(03):55 − 58.
    [10]
    国家粮食储备局西安油脂科学研究设计院. 动植物油脂 脂肪酸甲酯制备 [S]. 中华人民共和国国家质量监督检验检疫总局; 中国国家标准化管理委员会. 2008:28.
    [11]
    中国预防医学科学院营养与食品卫生研究所. 食品中氨基酸的测定 [S]. 中华人民共和国卫生部; 中国国家标准化管理委员会. 2003:8.
    [12]
    邹琦. 植物生理生化试验指导 [M]. 北京:中国农业出版,2004:111 − 112.
    [13]
    周文君,李俊,刘祥,等. 湖南省30个薄壳山核桃新品种经济性状比较分析[J]. 江西农业大学学报,2021,43(04):807 − 816.
    [14]
    宋思琼,钟佳琦,覃虹,等. 湖南地区10个薄壳山核桃品种的坚果品质评价[J]. 中国油脂,2023,48(09):113 − 119.
    [15]
    罗会婷,贾晓东,翟敏,等. 76株薄壳山核桃实生单株的果实品质差异及综合评价[J]. 植物资源与环境学报,2017,26(01):47 − 54. doi: 10.3969/j.issn.1674-7895.2017.01.06
    [16]
    吴文龙,李永荣,方亮,等. 薄壳山核桃果实性状的遗传变异与相关性研究[J]. 经济林研究,2010,28(03):25 − 30. doi: 10.3969/j.issn.1003-8981.2010.03.005
    [17]
    方亮,吴文龙,李永荣,等. 不同品种薄壳山核桃在南京地区种植的果实品质研究[J]. 江苏农业科学,2010(03):166 − 169. doi: 10.3969/j.issn.1002-1302.2010.03.068
    [18]
    左继林,孙颖,吴妹杰,等. 美国薄壳山核桃实生种源果实品质主成分分析与综合评价[J]. 江苏农业科学,2019,47(18):235 − 240.
    [19]
    李川,姚小华,王开良,等. 12个薄壳山核桃无性系果(核)性状以及产量的比较[J]. 西南大学学报(自然科学版),2011,33(06):40 − 44.
    [20]
    贾晓东,罗会婷,翟敏,等. ‘波尼’薄壳山核桃果实发育动态分析[J]. 果树学报,2015,32(02):247 − 253.
    [21]
    THOMPSON T E. Pecan fruit shuck thickness is related to nut quality[J]. Hort Science,2005,40(6):1664 − 1666.
    [22]
    李永荣,李晓储,吴文龙,等. 66个薄壳山核桃实生单株果实性状变异选择研究[J]. 林业科学研究,2013,26(04):438 − 446. doi: 10.3969/j.issn.1001-1498.2013.04.008
    [23]
    李川,姚小华,王开良,等. 薄壳山核桃无性系果实性状指标简化研究[J]. 江西农业大学学报,2011,33(04):696 − 700. doi: 10.3969/j.issn.1000-2286.2011.04.013
    [24]
    王飞高,程慧,储开江,等. 薄壳山核桃优良单株种子及质量性状分析[J]. 安徽农业大学学报,2015,42(02):171 − 176.
    [25]
    张鹏,钟海雁,姚小华,等. 四种山核桃种仁含油率及脂肪酸组成比较分析[J]. 江西农业大学学报,2012,34(03):499 − 504. doi: 10.3969/j.issn.1000-2286.2012.03.016
    [26]
    VILLARREAL-LOZOYA J E,LOMBARDINI L,CISNEROS-ZEVALLOS L. Phytochemical constituents and antioxidant capacity of different pecan [ Carya illinoinensis (Wangenh.) K. Koch] cultivars[J]. Food Chemistry,2006,102(4):1241 − 1249.
    [27]
    李志. 5个美国山核桃品种在江苏常州的引种比较研究[D]. 雅安:四川农业大学,2014.
    [28]
    王萍,张银波,江木兰. 多不饱和脂肪酸的研究进展[J]. 中国油脂,2008,33(12):42 − 46. doi: 10.3321/j.issn:1003-7969.2008.12.011
    [29]
    常君,任华,姚小华,等. 41个薄壳山核桃品种果实营养成分与脂肪酸组成的比较分析[J]. 西南大学学报(自然科学版),2021,43(02):20 − 30.
    [30]
    周文君. 湖南省4个薄壳山核桃品种果实生长发育规律及综合评价[D]. 长沙:中南林业科技大学,2022.
    [31]
    韩海涛,宴正明,张润光,等. 核桃蛋白组分的营养价值、功能特性及抗氧化性研究[J]. 中国油脂,2019,44(04):29 − 34. doi: 10.3969/j.issn.1003-7969.2019.04.008
    [32]
    李述刚,陆健康,王萍,等. 新疆南疆扁桃仁中蛋白质与脂类营养分析[J]. 中国油脂,2015,40(02):30 − 32.
    [33]
    BLINDER M A,TOLLEFSEN D M. Site-directed mutagenesis of arginine 103 and lysine 185 in the proposed glycosaminoglycan-binding site of heparin cofactor II[J]. J Biol Chem,1990,265(1):286 − 291. doi: 10.1016/S0021-9258(19)40228-7
    [34]
    张桂君,吴克强,任洪海. 具有多种用途的珍贵树种——美国黑核桃[J]. 云南林业,2007(03):26.
    [35]
    郑丽静,聂继云,李明强,等. 苹果风味评价指标的筛选研究[J]. 中国农业科学,2015,48(14):2796 − 2805. doi: 10.3864/j.issn.0578-1752.2015.14.011
    [36]
    吴紫洁,阮成江,李贺,等. 12个沙棘品种的果实可溶性糖和有机酸组分研究[J]. 西北林学院学报,2016,31(04):106 − 112. doi: 10.3969/j.issn.1001-7461.2016.04.18

Catalog

    Article views (167) PDF downloads (76) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return