Advanced Search+
CHEN Shu-rong, ZHANG Chao, ZHENG Chao-chao, ZHANG Wei, YI Li-ta, YU Shu-quan. Estimation Methods for Biomass of Ecological Forest in Jinyun[J]. Journal of Zhejiang Forestry Science and Technology, 2015, 35(5): 20-28.
Citation: CHEN Shu-rong, ZHANG Chao, ZHENG Chao-chao, ZHANG Wei, YI Li-ta, YU Shu-quan. Estimation Methods for Biomass of Ecological Forest in Jinyun[J]. Journal of Zhejiang Forestry Science and Technology, 2015, 35(5): 20-28.

Estimation Methods for Biomass of Ecological Forest in Jinyun

More Information
  • Biomass of ecological forest in Jinyun county, Zhejiang province was estimated by multiple linear regression (MLR), partial least squares(PLS) regression, random forest regression and BP neutral network model based on Gaussian error function (Erf-BP), according to data from TM imagery and 117 permanent subcompartments forest management survey in 2010. There were 80 independent variables of geoscience and remote sensing. Results showed that random forest regression had better effect on R2, PRECISION and RMSE, while Erf-BP neural network on VR and BIAS. Comprehensive evaluation on precision and root mean square error indicated that random forest method was a better choice
  • [1]
    王云飞,庞勇,舒清态. 基于随机森林算法的橡胶林地上生物量遥感反演研究[J]. 西南林业大学学报,2013(6):38-45.
    [2]
    范文义,张海玉,于颖,等. 三种森林生物量估测模型的比较分析[J]. 植物生态学报,2011,35(4):402-410.
    [3]
    张茂震,王广兴,葛宏立,等. 基于空间仿真的仙居县森林碳分布估算[J]. 林业科学,2014(11):13-22.
    [4]
    娄雪婷,曾源,吴炳方. 森林地上生物量遥感估测研究进展[J]. 国土资源遥感,2011(1):1-8.
    [5]
    徐小军,杜华强,周国模,等. 基于遥感植被生物量估算模型自变量相关性分析综述[J]. 遥感技术与应用,2008,23(2):239-247.
    [6]
    郭志华,彭少麟,王伯苏. 利用TM数据提取粤西地区的森林生物量[J]. 生态学报,2002,22(11):1 832-1 839.
    [7]
    Hall R J, Skakun R S, Arsenault E J, et al. Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of

Catalog

    Article views (556) PDF downloads (235) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return