Advanced Search+
GUO Liang, LI He-peng, LU Gang, ZHANG Xiao-mian, YUE Chun-lei, GAO Zhi-hui. Physiological Responses of Ficus concinna var. subsessilis Seedingsto Salt Stress and Introduction Test[J]. Journal of Zhejiang Forestry Science and Technology, 2016, 36(4): 1-9.
Citation: GUO Liang, LI He-peng, LU Gang, ZHANG Xiao-mian, YUE Chun-lei, GAO Zhi-hui. Physiological Responses of Ficus concinna var. subsessilis Seedingsto Salt Stress and Introduction Test[J]. Journal of Zhejiang Forestry Science and Technology, 2016, 36(4): 1-9.

Physiological Responses of Ficus concinna var. subsessilis Seedingsto Salt Stress and Introduction Test

More Information
  • Received Date: January 24, 2016
  • Revised Date: May 28, 2016
  • Experiments were conducted on 3-year Ficus concinna var. subsessilis by salt stress (0, 0.3%, 0.6% and 0.9%) in 2011. Determinations were made on chlorophyll content and photosynthetic index on the 10th, 20th, 30th and 40th day after treatment. In 2016, introduction was made on 1-year F. concinna var. subsessilis seedlings at reclamation area of Taizhou Bay, Zhejiang province. The results showed that under 0.3% NaCl stress, content of total chlorophyll(Chl), Chla and Chlb gradually increased. Under 0.6% NaCl stress, content of Chlb decreased, while content of Chl and Chla decreased from the 10th to 20th day and then gradually increased later. The Chla/Chlb value increased from 10th to 20th day, decreased from 21st to 30th day, and increased from 31st to 40th day under 0.3% NaCl stress. Under 0.6% NaCl stress, Chla/Chlb value decreased from the 10th to the 20th day, and then increased gradually from 21st day to 40th day. The experiment resulted that salt stress significantly inhibited the net photosynthetic rate of the seedlings, especially on the 10th day, and inhibition was increased with the NaCl concentration. Photochemical efficiency of photosystemⅡ,maximum net photosynthetic rate, apparent quantum efficiency decreased with the increase of salt concentration. Light compensation point and dark respiration rate of the seedling decreased with the increase of salt concentration on the 10th day, increased on the 20th and 30th day. Introduction test and observation from 2006 to 2014 demonstrated that survival rate of introduced seedlings topped to 100%, with annual height growth of 30cm and ground diameter of 1.26-2.14cm. Temperature under zero could cause severe injury to seedlings under 5-year.
  • [1]
    徐恒刚. 中国盐生植被及盐渍化生态治理[M]. 北京:中国农业科学技术出版社,2004. 1 112.
    [2]
    孔强,陈秋夏,吴良文,等. 不同立地条件下东方杉等沿海防护林树种的生长生态特性研究[J]. 中国农学通报,2011,27(28):40-46.
    [3]
    宋丹,张华新,白淑兰,等. 植物耐盐种质资源评价及滨海盐碱地引种研究与展望[J]. 内蒙古林业科技,2006,1:37-38,44.
    [4]
    王佳丽,黄贤金,钟太洋,等. 盐碱地可持续利用研究综述[J]. 地理学报,2011,66(5):673-684.
    [5]
    林霞,郑坚,陈秋夏,等. NaCl胁迫对光合作用和抗氧化酶活性的影响[J]. 北京林业大学学报,2011,33(44):70-74.
    [6]
    林霞,郑坚,刘洪见,等. 不同基质对无柄小叶榕容器苗生长和叶片生理特性的影响[J]. 林业科学,2010,46(8)8:63-70.
    [7]
    林霞,郑坚,陈秋夏,等. 无柄小叶榕容器育苗轻型基质配方筛选[J]. 浙江林学院学报,2008,25(3):401-404.
    [8]
    王法格,李宇,柴芬友,等. 无柄小叶榕扦插育苗试验[J]. 现代农业科技,2007,(10):10-11.
    [9]
    陈秋夏,郑坚,林霞,等. 不同容器对木荷等3个容器苗生长的影响[J]. 西北林学院学报2009,24(2):75-79.
    [10]
    郑坚,陈秋夏,李效文,等. 无柄小叶榕容器苗形态和生理质量评价指标筛选[J]. 中国农学通报,2010,26(15):141-148.
    [11]
    金松恒,李雪芹,王俊刚. 高温胁迫对无柄小叶榕光合作用的影响[J]. 中国农学通报,2009,25(3):83-87.
    [12]
    张晓勉,高智慧,李明良,等. 无柄小叶榕耐寒性研究[J]. 浙江林业科技,2015,35(3):26-30.
    [13]
    李琳,林夏珍,刘志高,等. 海水胁迫下4种苗木的生长与生理特性[J]. 西北农业学报,2013,22(5):116-123.
    [14]
    陈福明,陈顺伟. 混合液法测定叶绿素含量的研究[J]. 浙江林业科技,1984,4(1):4-8.
    [15]
    Farquhar G D, Van Caemmerer S. Modeling of photosynthetic response to environmental conditions[C]. Lange OL, Nobel PS, Osmond CB. Physiological Plant Ecology Ⅱ. Encyclopedia of Plant Physiology. New Series,Berlin:Springer-Verlag,1982:549-587.
    [16]
    陆燕元,马焕成,李昊民,等. 土壤干旱对转基因甘薯光合曲线的响应[J]. 生态学报,2015,35(7):2 155-2 160.
    [17]
    卢刚,李贺鹏,张晓勉,等. 盐胁迫对海滨木槿幼苗生长及光合特性的影响[J]. 浙江林业科技,2015,35(3):16-25
    [18]
    王素平,李娟,郭世荣,等. NaC1胁迫对黄瓜幼苗植株生长和光合特性的影响[J]. 西北植物学报,2006,26(3):455-461.
    [19]
    汪贵斌,曹福亮. 盐分和水分胁迫对落羽杉幼苗的生长量及营养元素含量的影响[J]. 林业科学,2004,40(6):56-62.
    [20]
    Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses [J]. Plant Cell Environ,1993,16(1):15-24.
    [21]
    Munns R, Temmat A. Whole-plant responses to salinity [J]. Aust J Plant Physiol,1986,13(1):143-160.
    [22]
    林益,瓮颖,李贺鹏,等. 邓恩桉幼苗生长和光合特性对盐胁迫的响应[J]. 浙江林业科技, 2014,34(3):33-38.
    [23]
    王丹,万春阳,侯俊玲,等. 盐胁迫对甘草叶片光合色素含量和光合生理特性的影响[J]. 热带作物学报,2014,35(5):957-961.
    [24]
    Carter DR, Cheeseman J M. The effects of external NaCl on thylakoid stacking in lettuce plants[J].Plant Cell Environ,1993,16(2):215-222.
    [25]
    Mehta P, Jajoo A, Mathur S, et al. Chlorophyll a fluorescence study revealing effects of hish salt stress on Photosystem II in wheat leaves[J]. Plant Physiol Biochem,2010,48:16-20.
    [26]
    Kahn N A. NaCl-inhibited chlorophyll synthesis and associated changes in ethylene evolution and antioxidative enzyme activities in wheat[J]. Biol Plant,2003,47(3):437-440.
    [27]
    Everard J D, Gucci R, Kann S C, et a1. Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.)at various levels of root zone salinity [J]. Plant Physiol,1994,106(1):281-292.
    [28]
    Shabala S N, Shabala S I, Martynenko A I, et a1. Salinity effect on bioelectric activity growth Na+ accumulation and chlorophyll fluorcscence of corn leaves: a comparison survey and prospects for screening [J]. Aust J Plant Physiol,1998,25(5):609-6l6.
    [29]
    林叶春,曾昭海,任长忠,等. 局部根区灌溉对裸燕麦光合特征曲线及叶绿素荧光特性的影响[J]. 作物学报,2012,38(6):1 062-1 070.
    [30]
    Walting J R, Press M C, Quick W P. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum[J]. Plant Physiol,2000,123(3):1 143-1 152.
    [31]
    余叔文. 植物生理学和分子生物学[M]. 北京:科学出版社,1992:236-243.
    [32]
    卜令铎,张仁和,常宇,等. 苗期玉米叶片光合特性对水分胁迫的响应[J].生态学报,2010,30(2):5-11.
    [33]
    Zhou HH, Chen YN, Li WH, et al. Photosynthesis of Populus euphratica in relation to groundwater depths and high temperature in arid environment,northwest China[J]. Photosynthetica,2010,48(2):257-268.
    [34]
    王欢利,曹福亮,刘新亮. 高温胁迫下不同叶色银杏嫁接苗光响应曲线的拟合[J]. 南京林业大学学报(自然科学版),2015,39(2):14-20.
    [35]
    林霞. 无柄小叶榕发芽与生长对不同生态因子的响应研究[D]. 北京:北京林业大学,2010. 27-33.
    [36]
    李学斌,何剑英. 2010年冬台州市椒江区果树雪害调查浅析[J]. 浙江柑桔,2011,28(2):19-21.
  • Related Articles

    [1]LI Dongbin, WEI Jingjing, XU Zhibin, HE Liping, XU Dongbin, SHEN Dengfeng. Potential Distribution of Rhododendron huadingense by MaxEnt Model[J]. Journal of Zhejiang Forestry Science and Technology, 2024, 44(3): 1-10. DOI: 10.3969/j.issn.1001-3776.2024.03.001
    [2]ZHANG Jing-jing, JING Jing, ZHOU Zhi-jing, LAI Yi-nan, GAO Bo, LU Shan. Landscape Narrative of Zhejiang Garden in 2019 Beijing World Horticultural Exposition[J]. Journal of Zhejiang Forestry Science and Technology, 2023, 43(2): 65-70. DOI: 10.3969/j.issn.1001-3776.2023.02.011
    [3]YANG Shen, SUN Yu-hong, ZHAO Xiao-juan, WANG Qiu-xia, BAI Qing-rong, FANG Wen-sheng, CAO Ao-cheng. Soil Quality Investigation and Improvement Measures in Cerasus Plantations in Beijing Yuyuantan Park[J]. Journal of Zhejiang Forestry Science and Technology, 2023, 43(1): 38-44. DOI: 10.3969/j.issn.1001-3776.2023.01.006
    [4]HUANG Xu-bo, QIN Yu-chuan, LIU Ben-tong, WANG Li-lin, TONG Xiao-qing, FANG Ru, WANG Yan-bin. Optimized Extraction and Determination of Dihydromyricetin Content from Local and Introduced Ampelopsis grossedentata to Zhejiang Province[J]. Journal of Zhejiang Forestry Science and Technology, 2023, 43(1): 23-29. DOI: 10.3969/j.issn.1001-3776.2023.01.004
    [5]LI Hui, ZHANG Zhi-hua, JIAN Sheng-qi. Simulation of Potential Suitable Distribution Area of Pinus tabuliformis in Yiluo River Basin Based on MaxEnt Model[J]. Journal of Zhejiang Forestry Science and Technology, 2023, 43(1): 1-8. DOI: 10.3969/j.issn.1001-3776.2023.01.001
    [6]HUANG Rui-rong, ZHANG Lin, XU Peng-fei, XING Ya, ZHU Yong-wu, ZHAO Jun-wen, ZANG Yi. Analysis on Integration and Optimization Plan of Wuyi Natural Protected Areas in Zhejiang Province[J]. Journal of Zhejiang Forestry Science and Technology, 2022, 42(5): 58-65. DOI: 10.3969/j.issn.1001-3776.2022.05.008
    [7]FENG Hong-neng, YANG De-hong, SHEN Cong-ying. Prediction of Distribution of Alcimandra cathcartii in Yunnan Province based on Maximum Entropy Modeling[J]. Journal of Zhejiang Forestry Science and Technology, 2021, 41(3): 46-50. DOI: 10.3969/j.issn.1001-3776.2021.03.006
    [8]YIN Yan-nan, WU Jia-wen, TAN Jia-jin, HAO De-jun. Optimization of Medium and Culture Conditions for Bacillus cereus NJSZ-13[J]. Journal of Zhejiang Forestry Science and Technology, 2020, 40(6): 9-17. DOI: 10.3969/j.issn.1001-3776.2020.06.002
    [9]LIU Jiu-qing, ZHANG Shi-yu, SONG Guo-hao, JIANG Hai-long. Optimization Design of Flail Knife of Crushing Device for Forest Slash[J]. Journal of Zhejiang Forestry Science and Technology, 2017, 37(6): 15-21. DOI: 10.3969/j.issn.1001-3776.2017.06.003
    [10]JIANG Li-wei. Responses of Environmental Factors to Sap Flow of Robinia pseudoacacia in Beijing[J]. Journal of Zhejiang Forestry Science and Technology, 2017, 37(3): 36-42. DOI: 10.3969/j.issn.1001-3776.2017.03.007
  • Cited by

    Periodical cited type(1)

    1. 罗颖,李聪,王沛,田莉华,汪辉,周青平,雷映霞. 低氮胁迫下不同皮燕麦品种早期的响应研究及耐低氮性综合评价. 草业学报. 2024(02): 164-184 .

    Other cited types(5)

Catalog

    Article views (566) PDF downloads (269) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return