Citation: | LI Xiao-yun, YI Li-ta, LI Yan, LIU Mei-hua. Advances in Research on Plant Tolerance to Abiotic Stress by Arbuscular Mycorrhizal Fungi[J]. Journal of Zhejiang Forestry Science and Technology, 2022, 42(1): 101-110. |
[1] |
JUNG S C,MARTINEZ-MEDINA A,LOPEZ-RAEZ J A,et al. Mycorrhiza-induced resistance and priming of plant defenses[J]. J Chem Ecol, 2012,38(6):651-664.
|
[2] |
VANDER HEIJDEN M G A,MARTIN F M,SELOSSE M-A,et al. Mycorrhizal ecology and evolution: the past, the present, and the future[J]. New Phytol,2015,205(4):1406-1423.
|
[3] |
CAMENZIND T,RILLIG M C. Extraradical arbuscular mycorrhizal fungal hyphae in an organic tropical montane forest soil [J]. Soil Biol Biochem,2013,64(9):96-102.
|
[4] |
SALAM E A,ALATAR A,EL-SHEIKH M A. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose[J]. Saudi J Biol Sci,2017,25(8):1772-1780.
|
[5] |
ZHAN F D,LI B,JIANG M,et al. Effects of arbuscular mycorrhizal fungi on the growth and heavy metal accumulation of bermudagrass [Cynodon dactylon (L.) Pers.] grown in a lead-zinc mine wasteland[J]. Int J Phytoremediat,2019,21(9):849-856.
|
[6] |
王颖颖,赵冰,李莹. 丛枝菌根真菌对杜鹃花耐热性的影响[J]. 浙江农林大学学报,2019,36(4):733-740.
|
[7] |
叶林. 丛枝菌根真菌对西瓜盐碱胁迫的缓解效应及其调控机理[D]. 杨凌:西北农林科技大学,2019.
|
[8] |
GRIGULIS K,LAVOREL S,KRAINER U,et al. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services[J]. J Ecol,2013,101(1):47-57.
|
[9] |
GONG M G,TANG M,CHEN H,et al. Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress[J]. New For,2012,44(3):399-408.
|
[10] |
SELOSSE M A,STRULLU-DERRIEN C,MARTIN F M,et al. Plants, fungi and oomycetes: a 400-million years affair that shapes the biosphere[J]. New Phytol,2015,206(2):501-506.
|
[11] |
NAHEEDA B,CHENG Q,ABASS A M,et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance[J]. Front Plant Sci,2019,10:1068.
|
[12] |
韦莉莉,卢昌熠,丁晶,等. 丛枝菌根真菌参与下植物-土壤系统的养分交流及调控[J]. 生态学报,2016,36(14):4233-4243.
|
[13] |
PRINGLE A,BEVER J D,GARDES M,et al. Mycorrhizal symbioses and plant invasions[J]. Annu Rev Ecol Evol Syst,2009,40(1):699-715.
|
[14] |
JIANG Y N,WANG W X,XIE Q J,et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science,2017,356(6343):1172-1175.
|
[15] |
PARNISKE M. Arbuscular mycorrhiza: the mother of plant root endosymbiosis[J]. Nat Rev Microbiol,2008,6(10):763-775.
|
[16] |
TEDERSOO L,BAHRAM M,ZOBEL M. How mycorrhizal associations drive plant population and community biology[J]. Science,2020,367(6480):eaba1223.
|
[17] |
HASHEM A,ALQARAWI A A,RADHAKRISHNAN R,et al. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L.[J]. Saudi J Biol Sci,2018,25(6): 1102-1114.
|
[18] |
邱佳佳. 丛枝菌根真菌与玉米互作影响磷吸收的机制研究[D]. 泰安:山东农业大学,2017.
|
[19] |
薛英龙,李春越,王苁蓉,等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制[J]. 水土保持学报,2019,33(6):10-20.
|
[20] |
SCHNEPF A,JONES D,ROOSE T. Modelling nutrient uptake by individual hyphae of arbuscular mycorrhizal fungi: temporal and spatial scales for an experimental design[J]. Bull Math Biol,2011,73(9):2175-2200.
|
[21] |
DUAN T Y,FACELLI E,SMITH S E,et al. Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil[J]. Soil Biol Biochem,2011,2011,43(3): 571-578.
|
[22] |
何铮. 镉胁迫下丛枝菌根真菌对大叶女贞生长及镉耐受性的影响[J]. 西部林业科学,2020,49(1):87-91.
|
[23] |
路成成,蔡柏岩. AM真菌改善植物磷营养吸收和转运机制的研究进展[J]. 中国农学通报,2020,36(26):50-54.
|
[24] |
SMITH S E,JAKOBSEN I,GR?NLUND M,et al. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J]. Plant Physiol,2011,156(3):1050-1057.
|
[25] |
王敏强,吴沛鸿,沈益康,等. 盐胁迫下接种丛枝菌根真菌对甜菊生长和氮磷吸收的影响[J]. 应用与环境生物学报,2018,24(5):960-966.
|
[26] |
WANG F,JIANG R F,KERTESZ M A,et al. Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (Zea mays L.)[J]. Soil Biol and Biochem,2013,65(10):69-74.
|
[27] |
朱凌骏. 菌根真菌对提高皂荚和榉树耐盐性及促进氮磷吸收的作用研究[D]. 南京:南京林业大学,2019.
|
[28] |
岳海,何双凌,耿建建,等. 水分胁迫下丛枝菌根真菌对澳洲坚果幼苗磷利用效率的影响[J]. 中国油料作物学报,2020,42(2):285-291.
|
[29] |
任爱天,鲁为华,杨洁晶,等. 不同磷水平下AM真菌对紫花苜蓿生长和磷利用的影响[J]. 中国草地学报,2014,36(6):72-78.
|
[30] |
刘进法,夏仁学,王明元,等. 接种丛枝菌根真菌对枳吸收利用磷酸铝的影响[J]. 应用生态学报,2008,19(10): 2155-2160.
|
[31] |
LEISER W L,OLATOYE M O,RATTUNDE H F W,et al. No need to breed for enhanced colonization by arbuscular mycorrhizal fungi to improve low-P adaptation of West African sorghums[J]. Plant Soil,2016,401(1):51-64.
|
[32] |
HAWKINS H-J. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi[J]. Plant Soil,2000,226(2):275-285.
|
[33] |
陈永亮,陈保冬,刘蕾,等. 丛枝菌根真菌在土壤氮素循环中的作用[J]. 生态学报,2014,34(17):4807-4815.
|
[34] |
JANSA J,FORCZEK S T,ROZMO? M,et al. Arbuscular mycorrhiza and soil organic nitrogen: network of players and interactions[J]. Chem Biol Tech Agric,2019,6(1):10.
|
[35] |
HODGE A,STORER K. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems[J]. Plant Soil,2015,386(1):1-19.
|
[36] |
HODGE A,CAMPBELL C D,FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature,2001,413(6853):297-299.
|
[37] |
HODGE A,FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling [J]. Proc Natl Acad Sci,2010,107(31):13754-13759.
|
[38] |
STORER K T. Interactions between arbuscular mycorrhizal fungi and soil greenhouse gas fluxes[D]. Toronto:University of York,2013.
|
[39] |
SINGH L P,GILL S S,TUTEJA N. Unraveling the role of fungal symbionts in plant abiotic stress tolerance[J]. Plant Signal Behav,2011,6(2):175-191.
|
[40] |
TUTEJA N. Abscisic acid and abiotic stress signaling[J]. Plant Signal Behav,2007,2(3):135-138.
|
[41] |
MILLAR N S,BENNETT A E. Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi[J]. Oecologia,2016,182(3):625-641.
|
[42] |
JIN H,PLAHA P,PARK J Y,et al. Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil[J]. Plant Sci,2006,170(6):1081-1086.
|
[43] |
QIU Y J,ZHANG N L,ZHANG L L,et al. Mediation of arbuscular mycorrhizal fungi on growth and biochemical parameters of Ligustrum vicaryi in response to salinity[J]. Physiol Mol Plant Pathol,2020,112:101522.
|
[44] |
JIA X-M,ZHU Y-F,HU Y,et al. Integrated physiologic, proteomic, and metabolomic analyses of Malus halliana adaptation to saline-alkali stress[J]. Hortic Res,2019,6:91.
|
[45] |
范海霞,赵飒,辛国奇,等. 外源NO对盐胁迫下菊花幼苗生理特性的影响[J]. 北方园艺,2020,(19):70-77.
|
[46] |
WU Q S,ZOU Y N. Arbuscular mycorrhizal symbiosis improves growth and root nutrient status of citrus subjected to salt stress[J]. Sci Asia,2009,35(4):388-391.
|
[47] |
贺忠群,贺超兴,闫妍,等. 盐胁迫下丛枝菌根真菌对番茄吸水及水孔蛋白基因表达的调控[J]. 园艺学报,2011,38(2):273-280.
|
[48] |
陈婕. 丛枝菌根真菌(AMF)提高刺槐耐盐性机制的研究[D]. 杨凌:西北农林科技大学,2018.
|
[49] |
AIT-EL-MOKHTAR M,BASLAM M,BEN-LAOUANE R,et al. Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost[J]. Front Sustain Food Syst,2020,4:131.
|
[50] |
TURGUT YI?IT A,YILMAZ O,UZ?LDAY B,et al. Plant response to salinity: an analysis of ROS formation, signaling, and antioxidant defense[J]. Turk J Bot,2020,44(1):1-13.
|
[51] |
ZHU J K. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol,2003,6(5):441-445.
|
[52] |
PORCEL R,REDONDOGóMEZ S,MATEOSNARANJO E,et al. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress[J]. J Plant Physiol,2015,185(2):75-83.
|
[53] |
LIN J,WANG Y,SUN S,et al. Effects of arbuscular mycorrhizal fungi on the growth,photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition[J]. Sci Total Environ,2017,576(1):234-241.
|
[54] |
TIWARI J,MA Y,BAUDDH K. Arbuscular mycorrhizal fungi: an ecological accelerator of phytoremediation of metal contaminated soils[J]. Arch Agron Soil Sci,2020:1-14.
|
[55] |
RIAZ M,KAMRAN M,FANG Y,et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review[J]. J Hazard Mater,2021,402:123919.
|
[56] |
IANNONE M F,ROSALES E P,GROPPA M D,et al. Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium[J]. Protoplasma,2010,245(1):15-27.
|
[57] |
CHANDRA R,KANG H. Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids[J]. For Sci Technol,2016,12(2):55-61.
|
[58] |
DHALARIA R,KUMAR D,KUMAR H,et al. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants[J]. Agron,2020,10(6):815.
|
[59] |
RACHNA V,TAPWAL ASHWANI,KUMAR DINESH,et al. Vesicular arbuscular mycorrhizal diversity in some important ethnomedicinal plants of Western Himalaya[J]. Med Plants,2019,11(3):279-285.
|
[60] |
SESHADRI B,BOLAN N S,CHOPPALA G,et al. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil[J]. Chemosphere,2017,184:197-206.
|
[61] |
ZHANG X,ZHANG H,ZHANG Y,et al. Arbuscular mycorrhizal fungi alter carbohydrate distribution and amino acid accumulation in Medicago truncatula under lead stress[J]. Environ Exp Bot,2020,171:103950.
|
[62] |
GOHRE V,PASZKOWSKI U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation[J]. Planta,2006,223(6):1115-1122.
|
[63] |
KRUPA P,KOZDRóJ J. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus Sylvestris L.) seedlings[J]. Water Air Soil Pollut,2006,182(1):83-90.
|
[64] |
BAGO B,PFEFFER P E,ABUBAKER J,et al. Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid[J]. Plant Physiol,2003,131(3):1496-1507.
|
[65] |
ROZPADEK P,WEZOWICZ K,STOJAKOWSKA A,et al. Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity[J]. Chemosphere,2014,112:217-224.
|
[66] |
陈良华,胡相伟,杨万勤,等. 接种丛枝菌根真菌对雌雄美洲黑杨吸收铅镉的影响[J]. 环境科学学报,2017,37(1):308-317.
|
[67] |
LI H,LUO N,ZHANG L J,et al. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice[J]. Sci Total Environ. 2016,571(21):1183-1190.
|
[68] |
SADIA K,ASMA B,RIFFAT N M. Role of arbuscular mycorrhizal fungi in phytoremediation of heavy metals and effects on growth and biochemical activities of wheat (Triticum aestivum L.) plants in Zn contaminated soils[J]. Afr J Biotechnol,2016,15(20):872-883.
|
[69] |
ORLOWSKA E GODZIK B,TURNAU K. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L.[J]. Environ Pollut,2012,168(9):121-130.
|
[70] |
HE Y M,FAN X M,ZHANG G Q,et al. Effects of arbuscular mycorrhizal fungi and dark septate endophytes on maize performance and root traits under a high cadmium stress[J]. S Afr J Bot,2020,134(6):415-423.
|
[71] |
HU S S,HU B,CHEN Z B,et al. Antioxidant response in arbuscular mycorrhizal fungi inoculated wetland plant under Cr stress[J]. Environ Res,2020,191:110203.
|
[72] |
AL-ARJANI A F,HASHEM A,ABD-ALLAH E F. Arbuscular mycorrhizal fungi modulates dynamics tolerance expression to mitigate drought stress in Ephedra foliata Boiss[J]. Saudi J Biol Sci,2020,27(1):380-394.
|
[73] |
毕银丽. 丛枝菌根真菌在煤矿区沉陷地生态修复应用研究进展[J]. 菌物学报,2017,36(7):800-806
|
[74] |
JASTROW J D,MILLER R M,LUSSENHOP J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie[J]. Soil Biol Biochem,1998,30(7):905-916.
|
[75] |
CZARNES S,HALLETT P D,BENGOUGH A G,et al. Root-and microbial- derived mucilages affect soil structure and water transport[J]. Eur J Soil Sci,2000,51(3):435-443.
|
[76] |
RILLIG M C,STEINBERG P D. Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification[J]. Soil Biol Biochem,2002,34(9):1371-1374.
|
[77] |
ZARIK L,MEDDICH A,HIJRI M,et al. Use of arbuscular mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G[J]. C R Biol,2016,339(5-6):185-196.
|
[78] |
PORCEL R,AROCA R,RUIZ-LOZANO J M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review[J]. Agron Sustain Dev, 2011,32(1):181-200.
|
[79] |
ZHANG Z F,ZHANG J C,XU G P,et al. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress[J]. New For,2019,50(4):593-604.
|
[80] |
BUITINK G J. Mechanisms of plant desiccation tolerance[J]. Trends Plant Sci,2001,6(9):431-438.
|
[81] |
ZHAO R X,GUO W,BI N,et al. Arbuscular mycorrhizal fungi affect the growth,nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress[J]. Appl Soil Ecol,2015,88(4):41-49.
|
[82] |
ZHANG Z F,ZHANG J C,HUANG Y Q. Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions [J]. New For,2014,45(4):545-556.
|
[83] |
PORCEL R,RUIZ-LOZANO J M. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress[J]. J Exp Bot,2004,55(403):1743-1750.
|
[84] |
HE F,SHENG M,TANG M. Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress[J]. Front Plant Sci,2017,8:183.
|
[85] |
MATHUR S,TOMAR R S,JAJOO A. Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress[J]. Photosynth Res,2019,139(1):227-238.
|
[86] |
KRASENSKY J,JONAK C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. J Exp Bot,2012,63(4):1593-1608.
|
[87] |
LI Y,MATSUBARA Y,MIYAWAKI C,et al. Temperature stress tolerance and increase in antioxidative enzyme activities in mycorrhizal strawberry plants[J]. Acta Hortic,2008,774:391-396.
|
[88] |
LATEFA A A H,HE C X. Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress[J]. Acta Physiol Plant,2011,33(4):1217-1225.
|
[89] |
ZHU X K,SONG F B,LIU S Q,et al. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress[J]. Plant Soil,2011,346(1):189-199.
|
[90] |
ZHU X K,SONG F B,XU H W. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress[J]. Mycorrhiza,2010,20(5):325-332.
|
[91] |
LIU Z L,MA L N,HE X Y,et al. Water strategy of mycorrhizal rice at low temperature through the regulation of PIP aquaporins with the involvement of trehalose[J]. Appl Soil Ecol,2014,84(12):185-191.
|
[92] |
HAJIBOLAND R,JOUDMAND A,ALIASGHARZAD N,et al. Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley[J]. Crop Pasture Sci,2019,70(3):218-233.
|
[93] |
AHANGER M A,AGARWAL R M. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L.)[J]. Protoplasma,2017,254(4):1471-1486.
|
[94] |
LIU A R,CHEN S C,CHANG R,et al. Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity[J]. J Plant Res,2014,127(6):775-785.
|
[95] |
CHEN S C,JIN W J,LIU A R,et al. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress[J]. Sci Hortic,2013,160(3):222-229.
|
[96] |
邢红爽,张瑞,郭绍霞. 高温胁迫下丛枝菌根真菌对百合耐热性的影响[J]. 青岛农业大学学报,2018,35(04):258-264.
|
[97] |
LIU X M,XU Q L,LI Q G,et al. Physiological responses of the two blueberry cultivars to inoculation with an arbuscular mycorrhizal fungus under low-temperature stress[J]. J Plant Nutr,2017,40(18):2562-2570.
|
[98] |
张春楠,张瑞芳,王红,等.丛枝菌根真菌影响作物非生物胁迫耐受性的研究进展[J]. 微生物学通报,2020,47(11):3880-3891.
|
[99] |
姜朦,杨洪一. 丛枝菌根真菌对植物抗非生物胁迫研究进展[J]. 黑龙江农业科学,2020(09):117-121.
|
[100] |
赛牙热木·哈力甫,邓勋,宋小双,等. 外生菌根真菌对植物促生抗逆作用机制研究进展[J]. 世界林业研究,2020,34(01):19-24.
|