Citation: | WEN Qingqing, WANG Guangke, WU Dasheng. High-Resolution Remote Sensing Image Forest Land Change Detection Based on Deep Learning[J]. Journal of Zhejiang Forestry Science and Technology, 2024, 44(6): 69-79. DOI: 10.3969/j.issn.1001-3776.2024.06.010 |
Deep learning offers an efficient approach to forest land change detection by automatically extracting change features from dual-time-phase high-resolution images through large-scale data training, reducing reliance on operator experience and enhancing detection efficiency. Focusing on Zhejiang Province, this study utilized high-resolution remote sensing images from World Imagery Wayback and applied deep learning models, including UNet series, DeepLabV3 series, FCN, and SegNet, for binary classification of forest land changes. All models demonstrated strong performance on the test set, with mIoU above 84.70%, Accuracy above 92%, F1-score above 91.00%, and Recall above 91%. Among them, the UNet model achieved the best results, with mIoU of 89.54%, Accuracy of 95.15%, F1-score of 94.44%, and Recall of 94.13%, though all models showed varying degrees of edge contour blurring and incomplete intra-class connectivity. To address these limitations, the UNet model was improved using attention mechanisms, including SE (Squeeze-and-Excitation), SGAM (Spatial Gated Attention Mechanism), and CBAM (Convolutional Block Attention Module), and similar enhancements were applied to DeepLabV3 and DeepLabV3P models for control experiments. Results showed that the UNet+SE model, leveraging channel attention, achieved the greatest improvement in mIoU (0.18%), while models enhanced with spatial attention (UNet+SGAM, DeepLabV3+SGAM, DeepLabV3P+SGAM) experienced decreases in mIoU by 1.01%, 0.77%, and 0.67%, respectively, indicating that channel features are more critical than spatial features for forest land change detection. These findings confirm the UNet model’s superior performance and highlight the importance of prioritizing channel features, providing valuable insights for forest land change detection using deep learning and high-resolution remote sensing imagery.
[1] |
郭琦. 林业资源保护与森林防火管理的重要性及对策[J]. 农业与技术,2021,41(12):71 − 73.
|
[2] |
王帆. 基于高分遥感的林地动态变化检测算法研究[D]. 西安:西安科技大学,2021.
|
[3] |
周启鸣. 多时相遥感影像变化检测综述[J]. 地理信息世界,2011,9(02):28 − 33. doi: 10.3969/j.issn.1672-1586.2011.02.007
|
[4] |
林帅,刘会欣,张强,等. 张家口市植被指数变异及动态变化特征分析[J]. 农业技术与装备,2022(3):49 − 55. doi: 10.3969/j.issn.1673-887X.2022.03.018
|
[5] |
乐颖,夏元平. 基于比值法的多源多时相数据城区变化检测[J]. 测绘通报,2022(2):56 − 61.
|
[6] |
李福根,张保辉,段玉林. 利用植被指数非相似性监测水稻病虫害方法研究[J]. 中国农业信息,2020,32(1):46 − 63.
|
[7] |
SOLTANINEJAD M,JAFARI M,NOROOZI A,et al. Evaluation of vegetation changes in desertification projects using remote sensing techniques in bam,shahdad and garmsar regions,Iran[J]. Caspian Journal of Environmental Sciences,2021,19(1):47 − 57.
|
[8] |
ZHANG Y,JIANG F. Developing a remote sensing-based ecological index based on improved biophysical features[J]. Journal of Applied Remote Sensing,2021,16(1):012008 − 012008.
|
[9] |
SHNAIN S. Features extraction of lands at 7 images using tasseled cap transformation[J]. Journal of Al-Rafidain University College For Sciences,2021(1):215 − 223.
|
[10] |
SRISUK S,ARUNYAGOOL D,PETCHTHAWEETHAM B. Fast change detection based on GPGS-PCA[C]//2020 8th International Electrical Engineering Congress (iEECON). IEEE,2020:1 − 4.
|
[11] |
王鹏. 遥感影像的ISODATA分类算法的并行化研究[D]. 开封:河南大学,2016.
|
[12] |
齐永菊,裴亮,张宗科,等. 一种模糊聚类的遥感影像分析方法研究[J]. 测绘科学,2017,42(7):139 − 146.
|
[13] |
PAN H Y ,TONG X H,XU X,et al. Updating of land cover maps and change analysis using globe land 30 Product:a case study in shanghai metropolitan area,China[J]. Remote Sensing,2020,12(19):3147 − 3147. doi: 10.3390/rs12193147
|
[14] |
WANG J,ZHANG J X,ZHANG R. An integrated method for change detection and map updating based on decision tree rules[J]. Remote Sensing Information,2007,1(4):61 − 65.
|
[15] |
LIU X,GUO Y A. Remote sensing image change detection algorithm based on random forest[J]. Bulletin of Surveying and Mapping,2022(5):16 − 20.
|
[16] |
LECUN Y ,BOTTOU L . Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278 − 2324.
|
[17] |
RONNEBERGER O,FISCHER P,BROX T. U-net:Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer,Cham,2015:234 − 241.
|
[18] |
OKTAY O,SCHLEMPER J,FOLGOc L L,et al. Attention U-Net:Learning where to look for the pancreas[EB/OL]. [2024-03-20],http://arxiv.org/abs/1804.03999?sid_for_share=99125_3.
|
[19] |
YU C Q, WANG J B,PENG C,et al. BiSeNet:Bilateral segmentation network for real-time semantic segmentation[J]. Computer Vision-ECCV 2018:15th European Conference,2018(11217):334 − 349.
|
[20] |
ZHOU ZW,MD M R S,NIMA T,et al. Unet plus plus:a nested U-net architecture for medical image segmentation[J]. Lecture Notes in Computer Science,2018(11045):3 − 11.
|
[21] |
HUANG Z L, WANG X G, WEI Y C,et al. CCNet:Criss-cross attention for semantic segmentation[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2023,45(6):6896 − 6908. doi: 10.1109/TPAMI.2020.3007032
|
[22] |
CHEN L C,PAPANDREOU G,SCHROFF F,et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. [2024-02-13],https://arxiv.org/abs/1706.05587?sid_for_share=99125_3.
|
[23] |
FU J,LIU J ,TIAN H J,et al. Dual attention network for scene segmentation[J]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2019(02983):3141 − 3149.
|
[24] |
LIANG CC,YUKUN Z,GEORGE P,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision,2018,11211:833 − 851.
|
[25] |
QIN X,ZHANG Z,HUANG C,et al. U 2 -Net:Going deeper with nested U-structure for salient object detection[J]. Pattern Recognition,2020,106(C):107404 − 107404.
|
[26] |
VIJAY B,ALEX K,ROBERTO C. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence,2017,39(12):2481 − 2495. doi: 10.1109/TPAMI.2016.2644615
|
[27] |
ZHAO H S,SHI J P,QI X J,et al. Pyramid scene parsing network[J]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017(01105):6230 − 6239.
|
[28] |
HUANG H M,LIN L F,TONG R F,et al. Unet 3+:a full-scale connected unet for medical image segmentation[C]. IEEE International Conference on Acoustics,Speech,and Signal Processing,2020,abs/2004.08790:1055 − 1059.
|
[29] |
YU C,GAO C,WANG J,et al. BiseNet V2:bilateral network with guided aggregation for real-time semantic segmentation[J]. Springer US,2021(129):3051−3068.
|
[30] |
WANG J,SUN K,CHENG T,et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(10):3349 − 3364. doi: 10.1109/TPAMI.2020.2983686
|
[31] |
POUDEL K P R,LIWICKI S,CIPOLLA R. Fast-SCNN:Fast semantic segmentation network[J]. British Machine Vision Conference,2019(04502):289 − 289.
|
[32] |
HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018:7132 − 7141.
|
[33] |
WOO S,PARK J,LEE J Y,et al. Cbam:Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018:3 − 19.
|
[34] |
艾遒一,黄华国,郭颖,等. 基于孪生残差神经网络的GF-2影像林地变化检测——以浙江省建德林场为例[J]. 遥感技术与应用,2024,39(1):24 − 33.
|