Advanced Search+
LI Dongbin, WEI Jingjing, XU Zhibin, HE Liping, XU Dongbin, SHEN Dengfeng. Potential Distribution of Rhododendron huadingense by MaxEnt Model[J]. Journal of Zhejiang Forestry Science and Technology, 2024, 44(3): 1-10. DOI: 10.3969/j.issn.1001-3776.2024.03.001
Citation: LI Dongbin, WEI Jingjing, XU Zhibin, HE Liping, XU Dongbin, SHEN Dengfeng. Potential Distribution of Rhododendron huadingense by MaxEnt Model[J]. Journal of Zhejiang Forestry Science and Technology, 2024, 44(3): 1-10. DOI: 10.3969/j.issn.1001-3776.2024.03.001

Potential Distribution of Rhododendron huadingense by MaxEnt Model

More Information
  • Received Date: August 10, 2023
  • Revised Date: February 19, 2024
  • Available Online: July 04, 2024
  • Based on 24 precise and effective distribution coordinates of Rhododendron huadingense and 10 selected environmental variables, the potential distribution and change of R. huadingense in China in the present and future, as well as the main impact environmental variables, were predicted using ArcGIS software and MaxEnt model. It aims to provide scientific references for the resource protection and reintroduction of R. huadingense. The results showed that MaxEnt model could accurately predict potential distribution of R. huadingense in China. The precipitation of the driest season, mean annual temperature and altitude were the main environmental variables affecting the survival and distribution of R. huadingense, with narrow threshold, which highly limit the potential distribution of R. huadingense. At present, the potential distribution of R. huadingense mainly distributed in the specific mountain areas of Zhejiang and Anhui province, with area only 2140.3 km2. In the 2050s and 2090s, under future climate change, the potential distribution area of R. huadingense would decrease sharply or even disappear, and the degree of endangerment and extinction risk would significantly increase.

  • [1]
    LARSON E R,ARMSTRONG E M,HARPER H,et al. One hundred important questions for plant science-reflecting on a decade of plant research[J]. New Phytol,2023,238(2):464 − 469. doi: 10.1111/nph.18663
    [2]
    赵卫,王昊,肖颖,等. 气候变化对野生生物类自然保护区的影响和风险[J]. 生态学报,2023,43(13):1 − 11.
    [3]
    KOLANOWSKA M,REWICZ A,BARANOW P. Ecological niche modeling of the pantropical orchid Polystachya concreta (Orchidaceae) and its response to climate change[J]. Sci Rep,2020,10(01):14801. doi: 10.1038/s41598-020-71732-1
    [4]
    DONG P B,WANG L Y,WANG L J,et al. Distributional response of the rare and endangered tree species Abies chensiensis to climate change in East Asia[J]. Biology,2022,11(11):1659. doi: 10.3390/biology11111659
    [5]
    祖奎玲,王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性,2022,30(05):123 − 137.
    [6]
    KNIGHT J. Scientists’ warning of the impacts of climate change on mountains[J]. Peer J,2022,10:e14253. doi: 10.7717/peerj.14253
    [7]
    李东宾,徐婧,何立平,等. 四明山野生杜鹃花资源遗传多样性和亲缘关系分析[J]. 林业科技,2023,48(01):15 − 19.
    [8]
    蔡鑫,陈波,陈锋,等. 珍稀特有植物华顶杜鹃的种群结构和种间联结[J]. 浙江大学学报(理学版),2019,46(03):354 − 363.
    [9]
    褚文珂,周莹莹,陈子林,等. 珍稀植物华顶杜鹃群落分类和物种多样性研究[J]. 杭州师范大学学报(自然科学版),2013,12(03):240 − 244.
    [10]
    曾汉元,丁炳扬,方腾. 浙江天台华顶杜鹃的群落学研究[J]. 浙江大学学报(理学版),2001,28(6):686 − 691.
    [11]
    CHEN Y H,WU Y B,DONG Y R,et al. Extinction risk of Chinese angiosperms varies between woody and herbaceous species[J]. Divers Distr,2022,29(2):232 − 243.
    [12]
    GUISAN A,ZIMMERMANN N E. Predictive habitat distribution models in ecology[J]. Ecol Model,2000,135(2):147 − 186.
    [13]
    陈凯扬,王博,陈晨,等. 祁连山特有濒危植物穴丝荠分布预测及其重要影响因子分析[J]. 西北植物学报,2022,42(11):1954 − 1961.
    [14]
    刘晓彤,袁泉,倪健. 中国植物分布模拟研究现状[J]. 植物生态学报,2019,43:273 − 283.
    [15]
    ELITH J,PHILLIPS S J,HASTIE T,et al. A statistical explanation of MaxEnt for ecologists[J]. Divers Distr,2011,17:43 − 57. doi: 10.1111/j.1472-4642.2010.00725.x
    [16]
    李晓辰,贡璐,魏博,等. 气候变化对新疆雪岭云杉潜在适宜分布及生态位分化的影响[J]. 生态学报,2022,42(10):4091 − 4100.
    [17]
    YANG J T,JIANG P,HUANG Y,et al. Potential geographic distribution of relict plant Pteroceltis tatarinowii in China under climate change scenarios[J]. PLoS ONE,2022,17(4):e0266133. doi: 10.1371/journal.pone.0266133
    [18]
    GAO X X,LIU J,HUANG Z H. The impact of climate change on the distribution of rare and endangered tree Firmiana kwangsiensis using the Maxent modeling[J]. Ecol Evolut,2022,12:e9165. doi: 10.1002/ece3.9165
    [19]
    DEB J C,PHINN S,BUTT N,et al. The impact of climate change on the distribution of two threatened dipterocarp trees[J]. Ecol Evolut,2017,7(7):2238 − 2248. doi: 10.1002/ece3.2846
    [20]
    HU H W,WEI Y Q,WANG W Y,et al. Richness and distribution of endangered orchid species under different climate scenarios on the Qinghai-Tibetan plateau[J]. Front Plant Sci,2022,13:948189. doi: 10.3389/fpls.2022.948189
    [21]
    YE P C,ZHANG G F,ZHAO X,et al. Potential geographical distribution and environmental explanations of rare and endangered plant species through combined modeling:a case study of Northwest Yunnan,China[J]. Ecol Evolut,2021,11(19):13052 − 13067. doi: 10.1002/ece3.7999
    [22]
    SANGUET A,WYLER N,PETITPIERRE B,et al. Beyond topo-climatic predictors:does habitats distribution and remote sensing information improve predictions of species distribution models?[J]. Global Ecol Conserv,2022,39:e02286. doi: 10.1016/j.gecco.2022.e02286
    [23]
    金孝锋,鲁益飞,丁炳扬,等. 浙江种子植物物种编目[J]. 生物多样性,2022,30(06):31 − 39.
    [24]
    QIN M X,GAO X Y,FENG M C,et al. Modeling of the potential geographical distribution of naked oat under climate change[J]. Front Plant Sci,2022,13:1009577.
    [25]
    夏松,刘鹏,江志红,等. CMIP5和CMIP6模式在历史试验下对AMO和PDO的模拟评估[J]. 地球科学进展,2021,36(1):58 − 68.
    [26]
    甘小玲,常亚鹏,江原,等. 气候变化对祁连山蒙古扁桃潜在适生区的影响[J]. 生态学报,2023,43(2):768 − 776.
    [27]
    朱耿平,乔慧捷. Maxent模型复杂度对物种潜在分布区预测的影响[J]. 生物多样性,2016,24(10):1189 − 1196.
    [28]
    OUYANG X H,BAI S H,STRACHAN G B,et al. Simulation of the potential distribution of rare and endangered Satyrium species in China under climate change[J]. Ecol Evolut,2022,12(7):e9054. doi: 10.1002/ece3.9054
    [29]
    GU C J,TU Y L,LIU L S,et al. Predicting the potential global distribution of Ageratina adenophora under current and future climate change scenarios[J]. Ecol Evolut,2021,11(17):12092 − 12113. doi: 10.1002/ece3.7974
    [30]
    ZHAO J Q,GAO T,DU J J,et al. Future trends in Obolodiplosis robiniae distribution across Eurasian Continent under global climate change[J]. Insects,2023,14(1):48. doi: 10.3390/insects14010048
    [31]
    高明龙,萨如拉,铁牛,等. 不同气候环境的我国白桦潜在分布区预测[J]. 东北林业大学学报,2023,51(2):54 − 61.
    [32]
    BRONDIZIO ES,SETTELE J,DIAZ S,et al. Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services[R]. 2021.
    [33]
    许玥,臧润国. 中国极小种群野生植物保护理论与实践研究进展[J]. 生物多样性,2022,30(10):1 − 22.
    [34]
    焦珂伟,高江波,吴绍洪,等. 植被活动对气候变化的响应过程研究进展[J]. 生态学报,2018,38(6):2229 − 2238.
    [35]
    LOARIE S R,DUFFY P B,HAMILTON H,et al. The velocity of climate change[J]. Nature,2009,462:1052 − 1055. doi: 10.1038/nature08649
    [36]
    JEONG H,CHO Y C,KIM E. Site-specific temporal variation of population dynamics in subalpine endemic plant species[J]. Sci Rep,2022,12(01):19207. doi: 10.1038/s41598-022-23903-5
    [37]
    朱满乐,韦宝婧,胡希军,等. 基于MaxEnt模型的濒危植物丹霞梧桐潜在适生区预测[J]. 生态科学,2022,41(05):55 − 62.
    [38]
    张央,武建勇,安明态,等. 中国硬叶兜兰地理分布格局及其潜在分布区预测[J]. 西北植物学报,2021,41(11):1932 − 1939.
    [39]
    WANG C J,LIU C Z,WAN J Z,et al. Climate change may threaten habitat suitability of threatened plant species within Chinese nature reserves[J]. Peer J,2016,4:e2091. doi: 10.7717/peerj.2091
    [40]
    刘婷,曹家豪,齐瑞,等. 基于GIS和MaxEnt模型分析气候变化背景下紫果云杉的潜在分布区[J]. 西北植物学报,2022,42(3):0481 − 0491.
    [41]
    潘少安,李旭华,冯秋红,等. 四川省岷江冷杉对气候变化的响应及其潜在分布格局[J]. 生态学报,2022,42(10):4055 − 4064.
    [42]
    赵文龙,陈红刚,刘录宏,等. 气候变化对濒危藏药红花绿绒蒿适生区分布格局的影响[J]. 中国药学杂志,2021,56(16):1306 − 1312.
    [43]
    秦媛媛,鲁客,杜忠毓,等. 气候变化情景下孑遗植物绵刺在中国的潜在地理分布[J]. 生态学报,2022,42(11):4473 − 4484.
    [44]
    何馨,马文旭,赵天田,等. 气候变化下濒危树种华榛的潜在适生区预测[J]. 林业科学研究,2022,35(1):104 − 114.
    [45]
    ZHAO W,WANG X L,LI L,et al. Evaluation of environmental factors affecting the genetic diversity,genetic structure,and the potential distribution of Rhododendron aureum Georgi under changing climate[J]. Ecol Evolut,2021,11:12294 − 12306. doi: 10.1002/ece3.7803
    [46]
    颜佳滢,吴志峰,申健,等. 未来气候变化对粤港澳地区杜鹃花适生区的影响[J]. 生态学报,2022,42(13):5481 − 5492.
    [47]
    PAQUETTE A,HARGREAVES A L. Biotic interactions are more often important at species’ warm versus cool range edges[J]. Ecol Lett,2021,24:2427 − 2438. doi: 10.1111/ele.13864
    [48]
    URBAN M C,BOCEDI G,HENDRY A P,et al. Improving the forecast for biodiversity under climate change[J]. Science,2016,353(6304):aad8466. doi: 10.1126/science.aad8466
    [49]
    ZU K L,WANG Z H,ZHU X Y,et al. Upward shift and elevational range contractions of subtropical mountain plants in response to climate change[J]. Sci Total Environ,2021,783:146896. doi: 10.1016/j.scitotenv.2021.146896

Catalog

    Article views (65) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return