Advanced Search+
LIN Xueyan, ZHU Huanteng, YANG Liu, WANG Yanbin, TONG Xiaoqing, ZHOU Kankan, HE Liang, WU Yingqi. Dynamic Analysis of Calcium and Oxalic Acid Content in Different Varieties of Chenopodium quinoa Leaves During Growth Period[J]. Journal of Zhejiang Forestry Science and Technology, 2024, 44(6): 61-68. DOI: 10.3969/j.issn.1001-3776.2024.06.009
Citation: LIN Xueyan, ZHU Huanteng, YANG Liu, WANG Yanbin, TONG Xiaoqing, ZHOU Kankan, HE Liang, WU Yingqi. Dynamic Analysis of Calcium and Oxalic Acid Content in Different Varieties of Chenopodium quinoa Leaves During Growth Period[J]. Journal of Zhejiang Forestry Science and Technology, 2024, 44(6): 61-68. DOI: 10.3969/j.issn.1001-3776.2024.06.009

Dynamic Analysis of Calcium and Oxalic Acid Content in Different Varieties of Chenopodium quinoa Leaves During Growth Period

More Information
  • Received Date: June 08, 2024
  • Revised Date: September 29, 2024
  • In order to find out the content of calcium and oxalic acid in the leaves of the genus Chenopodium, the main cultivated plant in Zhejiang Province, Ch. Quinoa ‘Longli 1’ Ch. Quinoa ‘Qingli 4’ Ch. Quinoa ‘Jili 2’ and Chenopodium formosanum were used as research objects and determined the content of calcium and oxalic acid in different forms within the edible period. The results showed that during the edible period of quinoa leaves, the bound calcium was mainly calcium, accounting for an average of more than 92% of the total calcium. Among them, Ch. Quinoa ‘Longli 1’ accounted for the most, reaching 97.3%, while the highest content was in Chenopodium formosanum, reaching 2.16 g·kg−1. The combined calcium content shows a continuous increasing trend, with the highest increase being in Ch. Quinoa ‘Jili 2’, which increased from 0.958 g·kg−1to 1.887g·kg−1. Ca2+ also showed continuous increasing trend, with a large increase in the early stage and a large increase in the later stage. The largest increment was Chenopodium formosanum, from 0.026 g·kg−1 to 0.349 g·kg−1. The average content of Ca2+ was still highest in Chenopodium formosanum, reaching 0.182 g·kg−1. Water soluble oxalic acid was the main form of oxalic acid present in quinoa leaves, with an average content of 5.78 g·kg−1, accounting for 93.4% of the total oxalic acid. Water soluble oxalic acid decreased within growth time, with the largest decrease being in Ch. Quinoa ‘Longli 1’. The soluble oxalic acid content decreased by 2.352 g·kg−1 between the beginning and end samples, and the largest decrease was Ch. Quinoa ‘Longli 1’, reaching 35%. The dynamic content of total oxalic acid was similar to water-soluble oxalic acid, and the content still showed a continuous decreasing trend during the growth period. Among them, the largest reduction and decline was Ch. Quinoa ‘Longli 1’. The average content of oxalic acid in solid form leaves is highest in Ch. Quinoa ‘Longli 1’, reaching 0.65 g·kg−1, while the content of Chenopodium formosanum leaves was the lowest. Correlation analysis showed that there was a significant negative correlation between oxalic acid content and growth time, significant positive correlation between total calcium content and growth time, and significant negative correlation between oxalic acid content and total calcium content.

  • [1]
    殷秀霞,陈芹芹,刘海双,等. 钙信号在植物响应盐胁迫中的作用研究进展[J]. 分子植物育种,2023,21(3):850 − 857.
    [2]
    叶盛,汪东风,丁凌志,等. 植物体内钙的存在形式研究进展(综述)[J]. 安徽农业大学学报,2000,27(4):417 − 421. doi: 10.3969/j.issn.1672-352X.2000.04.025
    [3]
    赵宇,蔡丽,陈忠敏. 茶叶中草酸的含量测定[J]. 食品与发酵科技,2016,52(5):59 − 62,67.
    [4]
    李梦琦,何兴东,杨祥祥,等. 半干旱区两种草原类型植物体内草酸钙研究[J]. 草地学报,2018,26(6):1421 − 1427 .
    [5]
    徐平宜,张嘉悦,何兴东. 过渡带近距离同地分布不同植物群落建群种叶片草酸钙特征[J]. 草地学报,2021,29(5):929 − 935.
    [6]
    乙引,苏志孟,张习敏,等. 草酸钙在植物中的生物合成及其防御功能[J]. 贵州师范大学学报:自然科学版,2018,36(4):1 − 6.
    [7]
    CASSLAND P,SJODE A,WINESTRAND S,et al. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications[J]. Applied Biochemistry and Biotechnology,2010,161(1/8):255 − 263.
    [8]
    曾芳,刘忠珍,许桂芝,等. 蔬菜中不同形态草酸的提取测定[J]. 食品科学,2009(16):216 − 219. doi: 10.3321/j.issn:1002-6630.2009.16.046
    [9]
    邓文聪,王妮,付治国,等. 微波消解-ICP-OES法测定藜麦中的微量元素[J]. 广州化工,2016,44(18):146 − 148. doi: 10.3969/j.issn.1001-9677.2016.18.049
    [10]
    吴应齐,姚理武,赵红波,等. 藜属植物叶片生长期有益矿质元素含量动态分析[J]. 浙江林业科技,2023,43(6):60 − 65. doi: 10.3969/j.issn.1001-3776.2023.06.008
    [11]
    陆敏佳,蒋玉蓉,陈国林,等. 藜麦叶片黄酮类物质的提取及基因型差异[J]. 浙江农林大学学报,2014,31(4):534 − 540. doi: 10.11833/j.issn.2095-0756.2014.04.007
    [12]
    申瑞玲,张文杰,董吉林,等. 藜麦的主要营养成分、矿物元素及植物化学物质含量测定[J]. 郑州轻工业学院学报(自然科学版),2015,30(5/6):17 − 21.
    [13]
    WEBER E J. The Inca’s ancient answer to food shortage[J]. Nature,1978,272(5653):486. doi: 10.1038/272486a0
    [14]
    AHAMED N T,SINGHAL R S,KULKARNI P R,et al. Alesser-known grain,Chenopodium quinoa:review of the chemical composition of its edible parts[J]. Food and Nutrition Bulletin,1998,19(1):61 − 70. doi: 10.1177/156482659801900110
    [15]
    梅丽,韩立红,祝宁,等. 藜麦菜的设施栽培技术[J]. 浙江农业科学,2022,63(10):2286 − 2290.
    [16]
    杨爱峥,李志磊,付强,等. CO2浓度倍增和土壤盐胁迫对藜麦生理特征及产量的影响[J]. 农业工程学报,2021,37(4):181 − 187. doi: 10.11975/j.issn.1002-6819.2021.4.022
    [17]
    JACOBSEN S E. The worldwide potential for quinoa (Chenopodium quinoa Willd.)[J]. Food Reviews International,2003,19(1/2):167 − 177.
    [18]
    杜春婷,党斌,杨希娟,等. 不同加工方式对藜麦淀粉结构与功能特性的影响[J]. 中国粮油学报,2022,37(4):54 − 61.
    [19]
    吴应齐,姚理武,吴丽芳,等. 不同品系藜麦苗菜农艺性状及营养品质评价[J]. 浙江林业科技,2021,41(4):56 − 61. doi: 10.3969/j.issn.1001-3776.2021.04.009
    [20]
    周孟琪. 益阳地区鲜食藜麦苗菜栽培技术[J]. 长江蔬菜,2021(17):36 − 37.
    [21]
    郭萍,尹跃明,杨德胜,等. 洞庭湖区藜麦苗菜种植试验初探[J]. 湖南农业科学,2020(2):22 − 26.
    [22]
    汤秀梅,李崇宗,尹家元,等. 蔬菜中钙铝元素存在形态分析[J]. 微量元素与健康研究,2001,18(4):49 − 50.
    [23]
    李孟孟,陈文迪,陈雯新,等. 马齿苋中草酸钙晶体形态及积累特征[J]. 中国果菜,2021,41(3):30 − 33.
    [24]
    WILKINS K A,MATTHUS E,Swarbreck SWARBRECKS M,et al. Calcium-mediated abiotic stress signaling in roots[J]. Fronts in Plant Science,7:1296.
    [25]
    王文昌,乔飞,江雪飞,等. 盐胁迫下巴西蕉幼苗部分细胞膜系统Ca+-ATPase的活性变化[J].植物生理学报,2016,52(8):1199 − 1206.
    [26]
    王云堂. 钙在植物营养中的作用分析[J]. 种子科技,2019,37(6):32 − 33.
    [27]
    刘帆,周青云,张宝忠,等. 盐碱地滴灌玉米体内Na+、K+、Ca2+、Mg2+的分布及运移特征[J]. 节水灌溉,2019(5):77 − 82.
    [28]
    符云鹏,李国芸,王义伟,等. 短期水分胁迫对香料烟叶片含水量及渗透调节物质的影响[J]. 中国烟草学报,2008,14(6):41 − 43.
    [29]
    张英鹏,林咸永,章永松,等. 氮素形态对菠菜硝酸盐及草酸含量的影响[J]. 园艺学报,2005,32(4):648 − 652.

Catalog

    Article views (30) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return